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ABSTRACT 

We present a GPU based acceleration of a virtual view 
synthesis from multiple sparse Light Field (LF) images. For the 
synthesis of a 2K x 2K virtual view from 24 images of the same 
resolution, we achieved 21.31 FPS using four Titan V GPUs 
with algorithmic optimizations, which corresponds 923 times of 
speedup. 

1 INTRODUCTION 
As Virtual Reality (VR) and Augmented Reality (AR) are 

becoming more popular, virtual view synthesis techniques are 
gaining attention. It synthesizes images from the different view 
of interest generated by Head Mounted Device (HMD) and thus 
it allows immersive experience to the users, providing a wide 
range of application domains including education, sports, and so 
forth.  

Recently, the virtual view synthesis technique for Light Field 
(LF) image data has emerged[1]. Since a single LF image frame 
typically consists of dozens of high-resolution images acquired 
from a set of cameras, it requires huge computations to synthesis 
a virtual view. In particular, the computations have to be 
processed in a short time in order to provide interactivity based 
on the movement of the users wearing the HMD. However, the 
current view synthesis technique takes dozens of seconds to 
synthesize a single virtual view. 

On the other hand, it has been more than a decade since 
General Purpose Graphics Processing Units (GPGPUs) have 
emerged and can accelerate various applications other than 
graphics. LF view synthesis algorithms are well suited for GPU 
acceleration since it has abundant data parallelism.  In this paper, 
we propose a GPU accelerated virtual view synthesis technique 
that efficiently exploits image level and pixel level data 
parallelism of LF images on a multi-GPU system, which 
achieves interactive throughput of 21.31 FPS for 24 sparse LF 
images of 2K x 2K resolution with depth information. To our 
best knowledge, this is the first work that accelerated virtual 
view synthesis from sparse LF images on GPUs.  
 

2 BACKGROUND 

2.1 Light Field Virtual View Synthesis  
Light filed camera can capture the light field information of 

a scene such as light ray directions as well as light intensity[2]. 
These days, the acquisition of LF images has been actively 
developed and the LF cameras that can capture the LF images in 
360 degree have been released by GoPro, Facebook, and 

Lytro[3]. 
Given a view information, a virtual view can be synthesized 

from the already acquired multiple LF images. First, the LF 
2D images are unprojected to a 3D space, followed by affine 
transformation with the view information. Then, it is projected 
back to the 2D space. Interpolation and blending are 
performed to add color to the virtual view. The still remaining 
holes or cracks can be filled with nearby pixels. The entire 
process involves a dozens of images with a number of pixel 
operations, making it too slow to be interactive. 

2.2 GPU Architecture and CUDA 
Graphics Processing Unit (GPU) has been rapidly evolved 

and one can effectively accelerate the algorithms with fine-
grain data-parallelism, exploiting thousands of cores in a GPU. 
A GPU that supports CUDA[4] consists of dozens of SMs, 
each of which in turn consists of dozens of CUDA cores. In 
CUDA programming model, a kernel is a routine that is 
executed on a GPU, typically by a massive number of CUDA 
threads. A kernel is comprised of CUDA blocks, each of which 
is comprised of CUDA threads. When a kernel is launched, 
CUDA blocks are assigned to SMs and the CUDA threads in 
the block is scheduled to the CUDA cores in the SM. Such 
architectures are well suited for the acceleration of 
applications with fine-grain data-parallelism such as LF virtual 
view synthesis.  

2.3 Reference View Synthesizer 
MPEG provides Reference View Synthesizer (RVS) as the 

reference code for the virtual view synthesis from multi 
views[5]. It implements a series of steps to synthesis a view 
with the given viewpoint from the LF images: Unprojection, 
Affine Transformation, Projection, Triangulation, Blending, 
and Inpainting. In Unprojection, the input reference view is 
transformed from 2D to 3D using the depth information. In 
Affine Transformation, it is transformed again in the 3D space 
according to the given viewpoint, generating a virtual view. In 
Projection, the virtual view is transformed back to the 2D 
space from the 3D space. Now, it knows the mapping 
information of the pixel in a reference view onto that in a 
virtual view. In Triangulation, it adds color to the virtual view 
using tri-linear interpolation method; it first forms a triangle 
with the neighboring pixels for every pixel in the reference 
view. Then, it can add color of the pixels in the virtual view 
since it knows the mapping information of the pixels as well 
as the color information of pixels in the reference view. In 
Blending, it aggregates the results of Triangulation into a 

3DSA5/3D5 - 2

ISSN-L 1883-2490/26/0083 © 2019 ITE and SID IDW ’19       83



 

   

single image; the pixel in each virtual view colorized by 
Triangulation can have different colors, and it is reduced a single 
value, which is computed as a weighted average. Finally, the 
remaining holes after Blending are filled by Inpainting, which 
uses the color of the neighboring pixels in the final virtual view. 
The most time consuming parts are Triangulation and Blending, 
as will be explained in Sec. 5.  

 

3 ACCELERATION USING GPUS 
We parallelized the entire process of RVS on GPUs. Each 

step is implemented as an efficient GPU kernel after carefully 
examining the parallelism in the step. Also, multiple GPUs are 
utilized and they are synchronized efficiently, which are 
required for the reduction in Blending, are studied. 

3.1 Parallelization 
The number of LF images used in this paper is 24 and the 

resolution of each image is 2K x 2K. Thus both image level 
parallelism and pixel level parallelism are abundant. Most steps 
except for Triangulation process the same computations for each 
pixel, which makes them well suited for the GPU computing.  

We exploit image-level parallelism with multiple GPUs and 
pixel-level parallelism with the thousands of CUDA core in a 
GPU. Most steps do not require any reduction but Blending does 
and also needs memory copy of the partial results among 
multiple GPUs, which will be explained in detail in Sec 3.2.  

 The GPU execution can be divided largely into the host-to-
device data transfer, the execution of the kernels, and the device-
to-host data transfer. Since each of these operations utilizes the 
different parts in a GPU, they can be processed asynchronously; 
for example, while the current image is processed in the kernel 
by CUDA cores, the host-to-device data transfer can be 
processed at the same time by the DMA controller, or the copy 
engine, overlapping the computation and data transfer. 

3.2  Efficient Inter-GPU Reduction in Blending 
Before Blending, every step can be executed in parallel in 

different GPUs, processing dozens of input images distributed 
over the multiple GPUs. In Blending, the final result image is 
obtained by performing weighted sum reduction. For example, 
if four GPUs are used for 24 images, each GPU is assigned 6 
images, which is reduced locally by simply performing 
accumulation. The partial result image in each of the four GPUs 
should be reduced into the final image by copying it to the other 
GPUs. Since the partial result image size is 80MB when its 
resolution is 2K x 2K and the format is YUV, the data transfer 
through a PCI bus would take more than 10 ms if it is copied via 
the host. This makes the Blending, as well as Triangulation, the 
performance bottleneck and efficient reduction is required. 

A naïve way for the reduction is to copy all the partial images 
to the same GPU and it accumulates them sequentially. When 
there are N GPUs, N-1 copies are required and N-1 
accumulations are done sequentially.  

To mitigate this problem, one can employ Parallel Binary 
Reduction, where each pair of GPUs can perform the reduction 
in parallel. For example, when four GPUs are used, GPU1 

copies its partial result to GPU0 at the same time GPU3 does 
to GPU2. Then, GPU0 and GPU2 can perform the reduction 
in parallel. Finally, GPU2 copies its reduced partial result to 
GPU0 for the final reduction. If supported by the system, the 
copies can be done in parallel. The sum reduction can be done 
in parallel in pairs, which would take log2N steps. Note that 
the synchronization is required at every step to prevent any 
data race. 

If a GPU supports Remote Direct Memory Access 
(RDMA)[6], the peer-to-peer data transfer between GPUs is 
faster than the case without RDMA. If RDMA is not supported, 
a GPU first needs to copy the data to the host and back to the 
target GPU; the peer-to-peer data transfer rate would be halved 
in this case.  

Fig. 1 illustrates the aforementioned reduction schemes 
when four GPUs are utilized. With RDMA supported, 
Sequential Reduction (Fig.1a) requires 3 steps for the copies 
while Parallel Binary Reduction (Fig. 1c) requires 2 steps. 
However, if RDMA is not supported, each method would take 
two times more steps as it implicitly copies the data to the host 
first; Sequential Reduction would require 6 steps of copies and 
Parallel Binary Reduction 4 steps. Thus, instead of the device-
to-device copy API, we explicitly call the host-to-device API 
followed by the device-to-host API. Then, Sequential 
Reduction requires 4 steps of copies (Fig. 1b) and Parallel 
Binary Reduction 4 steps (Fig. 1d). Depending on the GPU’s 
support for RDMA and the number of GPU utilized, one can 
choose the most efficient scheme for peer-to-peer data transfer 
in Blending. 

 

4 ALGORITHMIC OPTIMIZATION 
As mentioned earlier, Triangulation is one of the major 

performance bottleneck since it computes tri-linear 
interpolation for all the triangles formed by each pixel and its 
neighboring pixels in the reference views. The maximum 

 
 

 
 

 (c) Parallel binary reduction 
w/ RDMA 

(a) Sequential reduction 
w/ RDMA 

(d) Parallel binary reduction 
w/o RDMA 

Fig. 1 Copies needed for reduction in Blending 

(b) Sequential reduction 
w/o RDMA 
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number of triangles in a single 2K x 2K reference view can be 
around eight million.  

We propose to skip unnecessary or insignificant triangles to 
reduce the computation time. First, we skip the meaningless 
pixels in the 2D space when Equirectangular Projection (ERP) 
input reference views are used; if the input format is ERP, there 
are blank areas with the default pixel values when it has been 
projected to 2D space in the Projection step. Those pixels can be 
easily and safely skipped. Second, we can skip a triangle if the 
depth difference of the three pixels in the triangle is large as 
illustrated in Fig. 2. The pixels in such triangles would have very 
small weight in Blending, contributing little to the final virtual 
view, while the computation time for tri-linear interpolation for 
such a triangle is large as the area of the triangle is large.  We 
can skip those triangles, reducing much of the computation time, 
with no or negligible loss in picture quality. In fact, the 
interpolation results of such a triangle is not likely to be good, 
and could degrade the overall quality. 

. 

5 EXPERIMENTAL RESULTS 
The server used in the experiments has four Titan V GPUs 

and Intel Xeon Gold 6130 CPU running at 2.10GHz. The OS 
used is Ubuntu 18.04. 

The input data used is TechnicolorMuseum[7] where each 
frame consists of 24 sparse LF images of 2K x 2K resolution in 
ERP format with depth information. In this experiment, the time 
for reading the input file and rendering through HMD are 
excluded and the time only for the virtual view synthesis is 
included. 

5.1 The Performance Results 
Table 1 summarizes the execution time of each module in 

RVS on a single GPU. To correctly measure the execution time 

of each module, asynchronous execution is disabled and each 
module is synchronized. Most of the modules are significantly 
boosted by GPU execution as they have abundant of data-
parallelism without any reduction. The end-to-end execution 
time on a GPU including the data transfer overhead between 
the host and the device is about 101 ms. Note that this is the 
time obtained with the synchronous execution. Out of 101 ms, 
it takes 41 ms for the data transfer. It is alleviated by the 
asynchronous execution as will be presented later.  

Fig. 3 shows the speedup of each module except for the 
Blending module, compared to the CPU execution when 
varying the number of GPU from one to four: Preprocessing 
(PRE), Unprojection (UNPROJ), Affine Transformation 
(AFFINE), Projection (PROJ), and Triangulation (TRI). 
Hundreds of speedup is achieved with one GPU and up to 
thousands of speedups are achieved with two and four GPUs, 
scaling linearly to the number of GPUs. 

In the CPU execution of RVS, Triangulation and Blending 
are the major performance bottlenecks accounting for 53% and 
36% of the total time. The GPU execution of Triangulation 
without triangle skipping takes 164.9 ms, achieving 183x of 
speedup. With triangle skipping, the average number of 
triangles is reduced to about one million with 2.9x of reduction, 
and it takes 34.9 ms achieving 4.7x of further speedup, 
resulting in 865x of speedup for Triangulation. In Blending, 
the inefficient loop structure in RVS has been refactored first, 
which results in 3.1x of speedup from 20,688 ms to 6,590 ms. 
With GPU acceleration, it becomes 2.55 ms with 2,584x of 
further speedup. 

Fig. 4 shows the execution time of Blending when the 
number of GPUs used varies. The processing time taken in 

  
Fig. 3 The speedup of multi-GPU execution 
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Fig. 2 Skipping triangles in Triangulation 

Table 1 CPU and GPU execution time (ms) 
 CPU GPU (sync.) 

Memcpy host-to-device - 41.09 
Preprocessing 1,851 4.66 
Unprojection 2,461 4.22 
Affine Transformation 625 4.18 
Projection 989 4.08 
Triangulation 30,214 34.92 
Blending 20,688 2.55 
Inpainting 170 0.29 
Memcpy device-to-host - 3.83 

Synthesis time 56,943 101.56 
0.02 FPS 9.85 FPS 
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each GPU, denoted as Local Reduction, is reduced linearly to 
the number of GPUs since the 24 partial virtual views are equally 
distributed across all the GPUs. However, the data transfer 
overhead among GPUs become a performance bottleneck since 
Titan V does not support RDMA nor NVLink[8]. As explained 
in Sec. 3.2, if RDMA is not supported, the number of data 
transfer in Parallel Binary Reduction would be the same as 
Sequential Reduction, but would require synchronization. Thus 
we employ Sequential Reduction scheme. With RDMA support, 
Parallel Binary Reduction could be advantageous. With 
NVLink, the data transfer bandwidth is over 3x faster than that 
of a PCI bus, which could mitigate this overhead. The time taken 
in GPU0 after it has received all the partial outputs are denoted 
as Global Reduction and is negligible since the number of partial 
output views are only two or four, which is the number of GPUs 
used.  

Table 2 shows the end-to-end time of both synchronous and 
asynchronous execution using 1, 2, and 4 GPUs. When the 
number of GPUs is doubled from one to two in synchronous 
execution, it becomes 1.56x faster. However, when it is doubled 
from two to four, it becomes only 1.17x faster. This is because 
the data transfer overheads (host-to-device and device-to-device) 
become the performance bottleneck.  

By asynchronous execution, the data transfer overhead can 
be partially hidden with the kernel executions. When one GPU 
is used, asynchronous execution is 1.42x faster against 
synchronous execution. The speedup with asynchronous 
execution decreases as the number of GPUs increases due to the 
same reason.  

As a result, we achieved 46.92 ms per frame using four GPUs, 
which is 923x faster than the CPU execution time. 

5.2 The Quality Evaluation 
We have verified that the quality of GPU accelerated output 

image is almost the same as that of the reference CPU 
implementation. Root Mean Squared Error (RMSE) was used as 
a metric. Compared to a CPU output, RMSE of the GPU output 
without triangle skipping is 4.72 and RMSE of the GPU output 
with triangle skipping is 6.77. Fig. 5 shows the output images 
from both CPU and GPU implementations. They are 
indistinguishable with human eyes. 

 

6 CONCLUSIONS 
In this paper, we presented an efficient acceleration of virtual 

view synthesis from high-resolution sparse LF images with the 
depth information. With efficient parallelization and reduction 
using four GPUs, as well as algorithmic optimizations including 
triangle skipping, we could achieve 923x of speedup, which 
corresponds to 21.31 FPS.  
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