

GPU-Accelerated Interactive
Virtual View Synthesis from Light Field Images

Hyeonjin Jung1, Joungil Yun2, Won-Sik Cheong2, Youngmin Yi1
1University of Seoul {hyeonjin507, ymyi}@uos.ac.kr

2Electronics and Telecommunications Research Institute {sigipus, wscheong}@etri.re.kr
Keywords: Light Field, View Synthesis, GPU, CUDA

ABSTRACT

We present a GPU based acceleration of a virtual view
synthesis from multiple sparse Light Field (LF) images. For the
synthesis of a 2K x 2K virtual view from 24 images of the same
resolution, we achieved 21.31 FPS using four Titan V GPUs
with algorithmic optimizations, which corresponds 923 times of
speedup.

1 INTRODUCTION
As Virtual Reality (VR) and Augmented Reality (AR) are

becoming more popular, virtual view synthesis techniques are
gaining attention. It synthesizes images from the different view
of interest generated by Head Mounted Device (HMD) and thus
it allows immersive experience to the users, providing a wide
range of application domains including education, sports, and so
forth.

Recently, the virtual view synthesis technique for Light Field
(LF) image data has emerged[1]. Since a single LF image frame
typically consists of dozens of high-resolution images acquired
from a set of cameras, it requires huge computations to synthesis
a virtual view. In particular, the computations have to be
processed in a short time in order to provide interactivity based
on the movement of the users wearing the HMD. However, the
current view synthesis technique takes dozens of seconds to
synthesize a single virtual view.

On the other hand, it has been more than a decade since
General Purpose Graphics Processing Units (GPGPUs) have
emerged and can accelerate various applications other than
graphics. LF view synthesis algorithms are well suited for GPU
acceleration since it has abundant data parallelism. In this paper,
we propose a GPU accelerated virtual view synthesis technique
that efficiently exploits image level and pixel level data
parallelism of LF images on a multi-GPU system, which
achieves interactive throughput of 21.31 FPS for 24 sparse LF
images of 2K x 2K resolution with depth information. To our
best knowledge, this is the first work that accelerated virtual
view synthesis from sparse LF images on GPUs.

2 BACKGROUND

2.1 Light Field Virtual View Synthesis
Light filed camera can capture the light field information of

a scene such as light ray directions as well as light intensity[2].
These days, the acquisition of LF images has been actively
developed and the LF cameras that can capture the LF images in
360 degree have been released by GoPro, Facebook, and

Lytro[3].
Given a view information, a virtual view can be synthesized

from the already acquired multiple LF images. First, the LF
2D images are unprojected to a 3D space, followed by affine
transformation with the view information. Then, it is projected
back to the 2D space. Interpolation and blending are
performed to add color to the virtual view. The still remaining
holes or cracks can be filled with nearby pixels. The entire
process involves a dozens of images with a number of pixel
operations, making it too slow to be interactive.

2.2 GPU Architecture and CUDA
Graphics Processing Unit (GPU) has been rapidly evolved

and one can effectively accelerate the algorithms with fine-
grain data-parallelism, exploiting thousands of cores in a GPU.
A GPU that supports CUDA[4] consists of dozens of SMs,
each of which in turn consists of dozens of CUDA cores. In
CUDA programming model, a kernel is a routine that is
executed on a GPU, typically by a massive number of CUDA
threads. A kernel is comprised of CUDA blocks, each of which
is comprised of CUDA threads. When a kernel is launched,
CUDA blocks are assigned to SMs and the CUDA threads in
the block is scheduled to the CUDA cores in the SM. Such
architectures are well suited for the acceleration of
applications with fine-grain data-parallelism such as LF virtual
view synthesis.

2.3 Reference View Synthesizer
MPEG provides Reference View Synthesizer (RVS) as the

reference code for the virtual view synthesis from multi
views[5]. It implements a series of steps to synthesis a view
with the given viewpoint from the LF images: Unprojection,
Affine Transformation, Projection, Triangulation, Blending,
and Inpainting. In Unprojection, the input reference view is
transformed from 2D to 3D using the depth information. In
Affine Transformation, it is transformed again in the 3D space
according to the given viewpoint, generating a virtual view. In
Projection, the virtual view is transformed back to the 2D
space from the 3D space. Now, it knows the mapping
information of the pixel in a reference view onto that in a
virtual view. In Triangulation, it adds color to the virtual view
using tri-linear interpolation method; it first forms a triangle
with the neighboring pixels for every pixel in the reference
view. Then, it can add color of the pixels in the virtual view
since it knows the mapping information of the pixels as well
as the color information of pixels in the reference view. In
Blending, it aggregates the results of Triangulation into a

3DSA5/3D5 - 2

ISSN-L 1883-2490/26/0083 © 2019 ITE and SID IDW ’19 83

single image; the pixel in each virtual view colorized by
Triangulation can have different colors, and it is reduced a single
value, which is computed as a weighted average. Finally, the
remaining holes after Blending are filled by Inpainting, which
uses the color of the neighboring pixels in the final virtual view.
The most time consuming parts are Triangulation and Blending,
as will be explained in Sec. 5.

3 ACCELERATION USING GPUS
We parallelized the entire process of RVS on GPUs. Each

step is implemented as an efficient GPU kernel after carefully
examining the parallelism in the step. Also, multiple GPUs are
utilized and they are synchronized efficiently, which are
required for the reduction in Blending, are studied.

3.1 Parallelization
The number of LF images used in this paper is 24 and the

resolution of each image is 2K x 2K. Thus both image level
parallelism and pixel level parallelism are abundant. Most steps
except for Triangulation process the same computations for each
pixel, which makes them well suited for the GPU computing.

We exploit image-level parallelism with multiple GPUs and
pixel-level parallelism with the thousands of CUDA core in a
GPU. Most steps do not require any reduction but Blending does
and also needs memory copy of the partial results among
multiple GPUs, which will be explained in detail in Sec 3.2.

 The GPU execution can be divided largely into the host-to-
device data transfer, the execution of the kernels, and the device-
to-host data transfer. Since each of these operations utilizes the
different parts in a GPU, they can be processed asynchronously;
for example, while the current image is processed in the kernel
by CUDA cores, the host-to-device data transfer can be
processed at the same time by the DMA controller, or the copy
engine, overlapping the computation and data transfer.

3.2 Efficient Inter-GPU Reduction in Blending
Before Blending, every step can be executed in parallel in

different GPUs, processing dozens of input images distributed
over the multiple GPUs. In Blending, the final result image is
obtained by performing weighted sum reduction. For example,
if four GPUs are used for 24 images, each GPU is assigned 6
images, which is reduced locally by simply performing
accumulation. The partial result image in each of the four GPUs
should be reduced into the final image by copying it to the other
GPUs. Since the partial result image size is 80MB when its
resolution is 2K x 2K and the format is YUV, the data transfer
through a PCI bus would take more than 10 ms if it is copied via
the host. This makes the Blending, as well as Triangulation, the
performance bottleneck and efficient reduction is required.

A naïve way for the reduction is to copy all the partial images
to the same GPU and it accumulates them sequentially. When
there are N GPUs, N-1 copies are required and N-1
accumulations are done sequentially.

To mitigate this problem, one can employ Parallel Binary
Reduction, where each pair of GPUs can perform the reduction
in parallel. For example, when four GPUs are used, GPU1

copies its partial result to GPU0 at the same time GPU3 does
to GPU2. Then, GPU0 and GPU2 can perform the reduction
in parallel. Finally, GPU2 copies its reduced partial result to
GPU0 for the final reduction. If supported by the system, the
copies can be done in parallel. The sum reduction can be done
in parallel in pairs, which would take log2N steps. Note that
the synchronization is required at every step to prevent any
data race.

If a GPU supports Remote Direct Memory Access
(RDMA)[6], the peer-to-peer data transfer between GPUs is
faster than the case without RDMA. If RDMA is not supported,
a GPU first needs to copy the data to the host and back to the
target GPU; the peer-to-peer data transfer rate would be halved
in this case.

Fig. 1 illustrates the aforementioned reduction schemes
when four GPUs are utilized. With RDMA supported,
Sequential Reduction (Fig.1a) requires 3 steps for the copies
while Parallel Binary Reduction (Fig. 1c) requires 2 steps.
However, if RDMA is not supported, each method would take
two times more steps as it implicitly copies the data to the host
first; Sequential Reduction would require 6 steps of copies and
Parallel Binary Reduction 4 steps. Thus, instead of the device-
to-device copy API, we explicitly call the host-to-device API
followed by the device-to-host API. Then, Sequential
Reduction requires 4 steps of copies (Fig. 1b) and Parallel
Binary Reduction 4 steps (Fig. 1d). Depending on the GPU’s
support for RDMA and the number of GPU utilized, one can
choose the most efficient scheme for peer-to-peer data transfer
in Blending.

4 ALGORITHMIC OPTIMIZATION
As mentioned earlier, Triangulation is one of the major

performance bottleneck since it computes tri-linear
interpolation for all the triangles formed by each pixel and its
neighboring pixels in the reference views. The maximum

 (c) Parallel binary reduction
w/ RDMA

(a) Sequential reduction
w/ RDMA

(d) Parallel binary reduction
w/o RDMA

Fig. 1 Copies needed for reduction in Blending

(b) Sequential reduction
w/o RDMA

84 IDW ’19

number of triangles in a single 2K x 2K reference view can be
around eight million.

We propose to skip unnecessary or insignificant triangles to
reduce the computation time. First, we skip the meaningless
pixels in the 2D space when Equirectangular Projection (ERP)
input reference views are used; if the input format is ERP, there
are blank areas with the default pixel values when it has been
projected to 2D space in the Projection step. Those pixels can be
easily and safely skipped. Second, we can skip a triangle if the
depth difference of the three pixels in the triangle is large as
illustrated in Fig. 2. The pixels in such triangles would have very
small weight in Blending, contributing little to the final virtual
view, while the computation time for tri-linear interpolation for
such a triangle is large as the area of the triangle is large. We
can skip those triangles, reducing much of the computation time,
with no or negligible loss in picture quality. In fact, the
interpolation results of such a triangle is not likely to be good,
and could degrade the overall quality.

.

5 EXPERIMENTAL RESULTS
The server used in the experiments has four Titan V GPUs

and Intel Xeon Gold 6130 CPU running at 2.10GHz. The OS
used is Ubuntu 18.04.

The input data used is TechnicolorMuseum[7] where each
frame consists of 24 sparse LF images of 2K x 2K resolution in
ERP format with depth information. In this experiment, the time
for reading the input file and rendering through HMD are
excluded and the time only for the virtual view synthesis is
included.

5.1 The Performance Results
Table 1 summarizes the execution time of each module in

RVS on a single GPU. To correctly measure the execution time

of each module, asynchronous execution is disabled and each
module is synchronized. Most of the modules are significantly
boosted by GPU execution as they have abundant of data-
parallelism without any reduction. The end-to-end execution
time on a GPU including the data transfer overhead between
the host and the device is about 101 ms. Note that this is the
time obtained with the synchronous execution. Out of 101 ms,
it takes 41 ms for the data transfer. It is alleviated by the
asynchronous execution as will be presented later.

Fig. 3 shows the speedup of each module except for the
Blending module, compared to the CPU execution when
varying the number of GPU from one to four: Preprocessing
(PRE), Unprojection (UNPROJ), Affine Transformation
(AFFINE), Projection (PROJ), and Triangulation (TRI).
Hundreds of speedup is achieved with one GPU and up to
thousands of speedups are achieved with two and four GPUs,
scaling linearly to the number of GPUs.

In the CPU execution of RVS, Triangulation and Blending
are the major performance bottlenecks accounting for 53% and
36% of the total time. The GPU execution of Triangulation
without triangle skipping takes 164.9 ms, achieving 183x of
speedup. With triangle skipping, the average number of
triangles is reduced to about one million with 2.9x of reduction,
and it takes 34.9 ms achieving 4.7x of further speedup,
resulting in 865x of speedup for Triangulation. In Blending,
the inefficient loop structure in RVS has been refactored first,
which results in 3.1x of speedup from 20,688 ms to 6,590 ms.
With GPU acceleration, it becomes 2.55 ms with 2,584x of
further speedup.

Fig. 4 shows the execution time of Blending when the
number of GPUs used varies. The processing time taken in

Fig. 3 The speedup of multi-GPU execution

against CPU execution

0

1,000

2,000

3,000 1-GPU 2-GPU 4-GPU

Fig. 4 Blending execution time (ms)

2.55 1.39 0.78

10.71

24.350.39

0.71

0

10

20

30

1-GPU 2-GPU 4-GPU

Blending (Global reduction) Data transfer overhead
Blending (Local reduction)

Fig. 2 Skipping triangles in Triangulation

Table 1 CPU and GPU execution time (ms)
 CPU GPU (sync.)

Memcpy host-to-device - 41.09
Preprocessing 1,851 4.66
Unprojection 2,461 4.22
Affine Transformation 625 4.18
Projection 989 4.08
Triangulation 30,214 34.92
Blending 20,688 2.55
Inpainting 170 0.29
Memcpy device-to-host - 3.83

Synthesis time 56,943 101.56
0.02 FPS 9.85 FPS

IDW ’19 85

each GPU, denoted as Local Reduction, is reduced linearly to
the number of GPUs since the 24 partial virtual views are equally
distributed across all the GPUs. However, the data transfer
overhead among GPUs become a performance bottleneck since
Titan V does not support RDMA nor NVLink[8]. As explained
in Sec. 3.2, if RDMA is not supported, the number of data
transfer in Parallel Binary Reduction would be the same as
Sequential Reduction, but would require synchronization. Thus
we employ Sequential Reduction scheme. With RDMA support,
Parallel Binary Reduction could be advantageous. With
NVLink, the data transfer bandwidth is over 3x faster than that
of a PCI bus, which could mitigate this overhead. The time taken
in GPU0 after it has received all the partial outputs are denoted
as Global Reduction and is negligible since the number of partial
output views are only two or four, which is the number of GPUs
used.

Table 2 shows the end-to-end time of both synchronous and
asynchronous execution using 1, 2, and 4 GPUs. When the
number of GPUs is doubled from one to two in synchronous
execution, it becomes 1.56x faster. However, when it is doubled
from two to four, it becomes only 1.17x faster. This is because
the data transfer overheads (host-to-device and device-to-device)
become the performance bottleneck.

By asynchronous execution, the data transfer overhead can
be partially hidden with the kernel executions. When one GPU
is used, asynchronous execution is 1.42x faster against
synchronous execution. The speedup with asynchronous
execution decreases as the number of GPUs increases due to the
same reason.

As a result, we achieved 46.92 ms per frame using four GPUs,
which is 923x faster than the CPU execution time.

5.2 The Quality Evaluation
We have verified that the quality of GPU accelerated output

image is almost the same as that of the reference CPU
implementation. Root Mean Squared Error (RMSE) was used as
a metric. Compared to a CPU output, RMSE of the GPU output
without triangle skipping is 4.72 and RMSE of the GPU output
with triangle skipping is 6.77. Fig. 5 shows the output images
from both CPU and GPU implementations. They are
indistinguishable with human eyes.

6 CONCLUSIONS
In this paper, we presented an efficient acceleration of virtual

view synthesis from high-resolution sparse LF images with the
depth information. With efficient parallelization and reduction
using four GPUs, as well as algorithmic optimizations including
triangle skipping, we could achieve 923x of speedup, which
corresponds to 21.31 FPS.

ACKNOWLEDGMENT
This work was supported by Institute for Information &

communications Technology Promotion(IITP) grant funded
by the Korea government(MSIT) (No. 2017-0-00072,
Development of Audio/Video Coding and Light Field Media
Fundamental Technologies for Ultra Realistic Tera-media)

REFERENCES
[1] L. Yao, Y. Liu, W. Xu, “Real-time virtual view

synthesis using light field,” EURASIP Journal on
Image and Video Processing, vol. 2016, pp. 1-10
(2016).

[2] Lee G., Lee E., Cheong W., Hur N., “Trend of Light-
Field Image Acquisition and Representation
Technology,” Electronics and Telecommunications
Trends. Vol. 31, No. 3, pp. 50-59 (2016).

[3] Jung J., Park Y., Yun K., Yun J., Cheong W., Seo J.,
“Trends in Acquisition and Service Technology for VR
Media,” Electronics and Telecommunications Trends.
Vol. 33, No. 2, pp. 48-55 (2018).

[4] “CUDA Toolkit Documentation,”
https://docs.nvidia.com/cuda/.

[5] ISO/IEC JTC1/SC29/WG11, Reference View
Synthesizer (RVS) Manual, W18068 (2018).

[6] “GPUDirect,” https://developer.nvidia.com/gpudirect.
[7] ISO/IEC JTC1/SC29/WG11, Technicolor 3DoF+ test

materials, M42349 (2018).
[8] “NVLink Fabric Multi-GPU Processing,”

https://www.nvidia.com/en-us/data-center/nvlink/.

Table 2 End-to-end synthesis time (ms (FPS))
Method (1) Sync. (2) Async.
1-GPU 101.56 (9.85) 71.25 (14.04)
2-GPU 65.16 (15.35) 52.39 (19.09)
4-GPU 55.58 (17.99) 46.92 (21.31)

Fig. 5 Comparison of Image Quality Fi 5 C
(a) CPU Image (b) GPU Image

86 IDW ’19

