

FDM-based Global Motion Estimation for Dynamic 3D Point
Cloud Compression

So Myung LEE1, Li Cui1, Tianyu Dong1, Eun-Yong Chang2, Jihun Cha2 and
Euee S. Jang1

1Department of Computer and Software, Hanyang University ,Seoul 04763, Korea
2Electronics and Telecommunications Research Institute (ETRI), Daejeon 34129, Korea

Keywords: dynamic point cloud compression, global motion estimation, fast distortion measurement

ABSTRACT
In this paper, we propose a fast global motion estimation

(GME) for dynamic 3D point cloud compression (PCC).
We applied fast distortion measurement method(FDM) to
replace and reduce the computational complexity of GME.
The experimental results show that the proposed method
is two times faster than MPEG V-PCC.

1 INTRODUCTION
Augmented reality/virtual reality(AR/VR) applications

are becoming more popular in recent years, which
includes dynamic 3D point clouds. These applications
often face difficulty in storing or transmitting point cloud
data due to huge size requirement. Therefore, MPEG,
which is developing a set of standards for video
compression, uses video codec like Video-based Point
Cloud Compression (V-PCC) to compress dynamic 3D
point cloud data [1]. Additionally, there is Geometry-based
Point Cloud Compression(G-PCC) that deals with static
and dynamic acquisition 3D point cloud in MPEG. If motion
estimation/compensation is adopted in G-PCC, it may be
possible to efficiently compress dynamic 3D point clouds.

There are some global motion estimation (GME)
studies for dynamic 3d point clouds, one of which is the
study for graph-based motion estimation/compensation
(ME/MC) [2]. The graph-based ME/MC study, represented
the time-fluctuation of the sequences using graphs, and
the positions and color data of point cloud were considered
to be the peak signal on the vertices of the graph. ME was
depicted as a feature matching between successive
graphs and it was used for color compensation in 3D point
cloud compression. Our proposed method deals with GME
algorithms simply in a different way such as sorting each
pixel in ascending order and counting the number of
identical pixels, which results in low computational
complexity.

We tried GME in another way to speed up the
computational complexity of the solution. The
computational complexity of the original GME method is
too high, because it needs to compare each pixel
positions(X,Y,Z) between frames one by one. But the
proposed method in this study is to sort pixels of the
previous frame and the next frame in ascending order and
count the number of identical pixels between two frames.
Calculating the number of identical pixels as this proposal,

it is much simpler and faster than that of the original
method.

In this paper, we first used the fast distortion
measurement (FDM) [3] method to reduce computational
complexity. The FDM method is used to removed the
duplicate points of two frames and the performance of
the method is compared with that of the existing method.
Experimental results in [3] has shown that the total time
computation of distortion measurement has reduced
between 47% and 74% . Because the time has been
reduced successfully, we have applied GME to FDM.

 The rest of this paper is organized as follows. In
section 2, we introduce the overall background for GME.
In section 3, we describe an explanation of the FDM on
which this work was based on and the proposed method,
GME. Results are presented in section 4 and conclusion
is given in section 5 briefly.

2 BACKGROUND
Generally, GME is an important task in video

compression. GME is useful for video content analysis
such as video processing, video object segmentation
and background modeling [4]. However, GME has high
computational complexity. So, the need for more
research in GME is on the rise to reduce computational
complexity. Although GME is costly in computational
complexity, it still poses a good position to provide further
compression efficiency. Thus, we applied GME to point
cloud, which is expected more complex than that in the
video.
GME in point cloud compression also has significant
computational complexity. We can depict a simple GME
encoding process. We start from the basic fact on points
in a dynamic point cloud: there is no relation between
points temporally. This facts implies that a GME process
in point cloud compression not only needs to measure
the distance between two adjacent point clouds, but also
needs to find out one-to-one mapping between (nearest)
points of two adjacent frames. This is where the huge
complexity comes from. The GME in video coding
computes N comparisons if there are N pixels in a video
frame. If there are M different positions (or movement of
a frame over the other), there could be MN computations
altogether. However, the GME in point cloud
compression adds additional computation: one-to-one

3DSA9/3D9 - 2

ISSN-L 1883-2490/26/0112 © 2019 ITE and SID IDW ’19 112

mapping between points (i.e., N2). The computation order
of GME in point cloud compression becomes MN + N2.
Therefore, the computational complexity of GME process
in PCC is dominantly determined how fast one-to-one
mapping can be processed.

The way to show the best GME results in MPEG PCC
is to use the most optimal method, PC_ERROR.
PC_ERROR is a software to measure the geometry
distortion of the point cloud used in MPEG [5]. The method
for measuring distortion is to determine how close the point
positions of the original point cloud data and the
compressed one are in Euclidean distances [3]. In
PC_ERROR, it identifies the corresponding point from the
other point cloud for every point in one point cloud to
measure the distances. In MPEG, PC_ERROR is used in
two different ways to measure distortion as shown in Fig.1
[5].

Fig. 1 Point-to-point distances vs. point-to-plane

distance [5]
In point-to-point distance measurement, it uses

equation (1) to measure the average or maximum in
Euclidean distances between a pair of points and point-to-
plane distance calculates as shown in equation (2) to
project the error vector E(i,j) along the normal direction

to obtain a new error vector [5].

The peak signal-to-noise rate(PSNR) can be calculated
from these obtained values using equation (3).

Dynamic 3d point cloud also uses PC_ERROR with this

distortion measurement method. Because it is
recommended to use the same matrix applied to
PC_ERROR. So we measured the results of this study
with the same algorithm used by PC_ERROR. The GME
method using PC_ERROR has its pros and cons. It
guarantees the optimal result given the search range. Yet,
the computational complexity remains very high (i.e. MN +
N2).

3 EXPERIMENTS

3.1 Fast Distortion Method
In this section, we introduce the current method of

acquiring distortion using PC_ERROR with two point
cloud data and the FDM method of obtaining distortion
through PC_ERROR with two changed point cloud data
after point deletion process. FDM is used to figure out
the distortion of the closest neighbors of the points
between two frames to reduce complexity [3] . First, the
pixel points (X,Y,Z axis) of each frames was sorted in
ascending order [3]. A method for sorting is as follows.
First of all, let the same x-values sort in a bundle. Then,
the remaining y-values and z-values from the bundle of
x-values are sorted in this way [3]. In this alignment, the
values of x, y, and z must be sorted in ascending order.
Second, we designed a fast searching algorithm with
arranged points in ascending order shown as Fig. 2 [3].

Fig. 2 Comparison between PC_ERROR and

proposed method [3]
Fig. 2-(a) measures distortion through PC_ERROR

with given original ply A and B. The proposed method is
shown as Fig. 2-(b). Fig. 2-(b) performs a duplicate point
deletion before doing PC_ERROR. Point deletion
process is shown as Fig. 3.

Fig. 3 Process of Point Deletion in proposed

method [3]
In Fig. 3, ply A and B with sorted in ascending order

perform the point deletion process. First, is the pointer
Ptr_i of ply A and is the pointer Ptr_j of ply B [3]. As
in the case of , if x, y and z coordinates of and
match each other, execute the point deletion process [3].

113 IDW ’19

After the process, each and pointer increase by one
for finding the next matching coordinates. In case of , if

 pointer is larger than pointer, pointer will be
increased until the coordinates of two pointers are equal.
And the case is the opposite of case [3].

After point deletion process, ply A and B become ply A’
and B’ with duplicate point deleted. Ply A’ and B’ also
measures distortion through PC_ERROR [3]. FDM
method reduces the computational complexity from N2 to
N log N.

3.2 Global Motion Estimation
We adopted the merit of FDM for GME design. In GME,

as shown in Fig. 4, Ply 1 extended the range of pixel
points(x,y,z) by using a global search for each pixel point;
then, generates a total of n different combinations. On the
contrary, Ply 2 is an original ply file without a global search.

Fig. 4 Ply 1 with global search and original ply 2
The n combinations of these generated Ply 1 and Ply 2

are compared through PC_ERROR as shown in Fig. 5-(1),
the reference method, to extract the most highest PSNR-
value out of n-combinations. The proposed method is
shown in Fig. 5-(2) and it performs a global search as
shown in Fig. 5-(1) and then sort the pixel points of Ply 1
and Ply 2 in ascending order, respectively. It then
compares each pixel point of Ply 1’ and Ply 2 to count the
number of identical points. The process of sorting is like
the point deletion process in Fig. 3. After the sorting Ply 1’
and Ply 2 in the same way as the Point Deletion process
in Fig. 3, it counts the number of identical points between
Ply 1’’ and Ply 2’ instead of deleting duplicate points.

Fig. 5 An algorithm for reference method and

proposed method with global search
After this process, it compares the largest number of

identical pixels as a result of Fig. 5-(2) and the highest
combination of PSNR as a result of Fig. 5-(1) to identify
how the accuracy of the two results is consistent. We
also measured the time and PSNR about the above
results.

4 EXPERIMENTAL RESULTS
For the evaluation of the proposed method, we used

one of the datasets provided by MPEG [6]. The dataset
is soldier ply files as shown in Fig. 6 with integerized
values of which each ply is made up of 300 frames.

Fig. 6 A sequence of soldier ply

We compared them with the previous and current
frame of the same ply and measured the average time
and PSNR through PC_ERROR. We designated a global
search range of -2 to +2 in each axis for each previous
frame and generated a total of 125 (= 53) combinations.
Therefore, the total of 125 combinations were executed
per frame through PC_ERROR.

Table 1 shows how the corresponding combinations
in the original method and the proposed method match
each other. The sequence of soldier is 78.6% with high
accuracy. Table 2 shows the average time and PSNR of
soldier sequence. The average time shows that the

IDW ’19 114

proposed method is about twice as fast as the original bur
for PSNR, the proposed method is lower than the
reference.

Table 1. Accuracy for reference and proposed
method results

Sequence
Accuracy for

reference and proposed
method results

soldier 78.6%

Table 2. Average time and PSNR for reference

method and proposed method

Reference method Proposed method
Time PSNR Time PSNR

383.2497 67.0002 241.5067 66.9525

5 CONCLUSION
In this paper, we propose a fast global motion

estimation (GME) for dynamic 3D point cloud compression
(PCC). The key point is to sort pixels of the previous and
next frame in ascending order then count the number of
same pixels between two frames. Thus, the time
computation of the proposed method has decreased as
shown in results. This method could give a new approach
on GME algorithm to compress dynamic 3D point cloud
data. In the future, other methods such as MEMC
algorithm with local search can be performed to better
compress dynamic 3d point cloud data.

ACKNOWLEDGEMENT
This work was supported by Institute for Information &

communications Technology Promotion (IITP) grant
funded by the Korea government (MSIT) (No. 2017-0-
00067, Development of ICT Core Technologies for Safe
Unmanned Vehicles)

REFERENCES
[1] ISO/IEC JTC1/SC29/WG11 MPEG2017/w16631.

Use cases for Point Cloud Compression. (Geneva,
January 2017).

[2] Dorina Thanou, Philip A. Chou and Pascal Frossard,
“GRAPH-BASED MOTION ESTIMATION AND
COMPENSATION FOR DYNAMIC 3D POINT
CLOUD COMPRESSION," Proc. ICIP'15, pp.3235-
3239 (2015).

[3] Yousun Park and Euee S. Jang, “Fast distortion
measurement method for MPEG point cloud
compression,”Proc. The Institute of Electronics and
Information Engineers'18, pp. 825-828 (2018).

[4] Yue-Meng Chen and Ivan V.Bajic, “Motion Vector
Outlier Rejection Cascade for Global Motion
Estimation," J. IEEE'09, Vol. 17, No. 2, pp. 197-200

(2010).
[5] Dong Tian, Hideaki Ochimizu, Chen Feng, Robert

Cohen and Anthony Vetro, “GEOMETRIC
DISTORTION METRICS FOR POINT CLOUD
COMPRESSION”, Proc. ICIP'17, pp. 3460-3464
(2017).

[6] ISO/IEC JTC1/SC29/WG11 MPEG2017/w18474.
Common test conditions for point cloud
compression. (Geneva, March 2019).

115 IDW ’19

