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ABSTRACT 
In general, if the 3D videos are represented by texture and its 

depth frames, the 3D multiview contents can be effectively 
produced by depth-image-based rendering (DIBR). In recent 
years, many researches are proposed to deal with the estimation 
of the depth map by using stereo images. For many 2D movies, 
the traditional depth cue methods are limited by specified 
scenery and achieve poor depth quality. In this paper, we 
proposed a precise depth map interpolation algorithm to 
estimate depth maps from two known depth maps as the depth 
keyframes and the color texture frames. After proper 
computation of superpixels, the proposed depth frame 
interpolation system contains texture-based depth estimation, 
error compensation, noise elimination, and forward/backward 
depth map merging steps. Simulations show that the proposed 
system can obtain high quality depth frame interpolation. 

1 INTRODUCTION 
In recent years, with vigorous development of 3D naked-eyes 

displays, 3D visualization has been widely used in the fields of 
entertainment games, film and television, medical applications. 
If the 3D information is with texture and depth information, the 
3D contents can be produced by depth-image-based rendering 
(DIBR) [1]. The DIBR generates multi-view images for 
effective 3D visualization. In addition to 2D color texture 
images, the corresponding depth map which presents the 
distance information of each pixel is necessary for the DIBR 
algorithm. The depth map and the texture image are used to 
interpolate/extrapolate other views. We are going to generate the 
depth map before performing DIBR for the 2D image frame. 

In general, the depth generation methods can be classified 
into three types: manual, semi-automatic, and automatic. For 
manual depth generation methods, a large amount of human 
resources is required to synthesize the depth map through 
segmentation of objects from color images. Such high labor cost 
work not only consumes time but also cannot meet the large 
demand of the 3D content industry. For automatic methods, it is 
divided into two parts. One is simple and intuitive, but can only 
handle a specific condition or scene. The other needs more 
complex calculations, but the results may not be satisfactory. Up 
to now, many methods, such as image classification [2], relative 
height cue [3], vanishing lines and vanishing point [4] have been 
proposed to generate the depth map required for 2D-3D 
conversion. These methods are intuitive and low computation. 
Nevertheless, each method has its own limitation to suit a certain 
situation. 

For estimating the depth of frames, it is important to 
precisely segment the moving objects. In order to meet this 
requirement, in this paper, we adopt the superpixel algorithm, 
called simple linear iterative clustering (SLIC) [5]. The SLIC 
adapts the k-means clustering method to efficiently generate 
superpixels. Superpixel makes up with adjacent and 
homogeneous region of the image. Segment the image makes 
the pixels meaningful and each superpixel consists of many 
pixels with similar colors and textures. It can reduce 
megapixels to hundreds of superpixels. Moreover, each 
superpixel in similar the color or texture is more meaningful 
than a single pixel. Since the depth map is the most important 
thing for 3D techniques, this paper proposed a semi-automatic 
depth generation method. Combining the above advantages, 
this method is not only intuitive but also high quality. The rest 
of this paper is organized as follows. The proposed system 
based on color texture information will be introduced in 
Section Two. Experimental results for video sequences will be 
demonstrated in Section Three. Finally, conclusions are drawn 
in Section Four. 

2 THE PROPOSED SYSTEM 
In the proposed system, the generation of the depth maps of 

a video sequence needs all color images frames and a few 
known depth maps of the keyframes. The video sequence is 
divided into different scene cuts manually where the frames in 
the same cut are highly correlated. For about every 5–20 
frames, a color texture frame is selected as the keyframe. Then, 
the depth keyframe is generated by an existed depth manually 
generation software. 

The proposed texture-based depth interpolation system is 
shown in Fig. 1. Assume that we have n adjacent color texture 
frames (F1, F2, …, Fn) and two depth keyframes (D1, Dn) as 
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Fig. 1. Flowchart of proposed depth interpolation system 
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the inputs. The proposed system is designed to interpolate the 
precise depth maps between two depth keyframes automatically. 
From the first and last depth keyframes, we could be obtained 
two estimated depth frames, which are generated from forward 
and backward propagation flows individually. Finally, we use a 
depth merge unit to get the final depth maps. In the following 
three subsections, we will describe them in details. 

2.1 Depth Estimation Unit 
The reference image Ft' with its corresponding reference 

depth frame Dt' are known for depth estimation, where t’=1 or n. 
For the frame Ft, we need to estimate the corresponding depth 
frame Dt from Ft'  and Dt', where 1 < t < n. Fig. 2 shows the 
flowchart of the depth estimation unit, which is further 
composed of similar pixel search and candidate pixel chosen 
kernels. 
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Fig. 2. The flowchart of depth estimation unit 

The target pixel p is at the position (x, y) on Ft. A window that 
should cover the displacement of p is defined centered at the 
position (x, y) on Ft'. By limiting the depth and texture values, 
we first check whether the window is a smooth depth region and 
the similar pixel could be found in the window, as 

max min1, if  5
( )

0, else
d d

S p  (1) 

and 
1, if  ( ) 1 and min τ,  

( )
0, else

p qS p I I q
T p , (2) 

where maxd  and mind denote the maximum and minimum 
depth values in the window respectively, Ip is the intensity of p, 
q denotes the pixel in the window, Iq is the intensity of each pixel 
q, and τ is a pre-defined threshold. If S(p) equals to 0, the 
window denotes a non-smooth depth region, and “similar pixel 
search” function will be executed to find a similar pixel. If T(p) 
equals to 1, the window is a smooth depth region and a similar 
pixel could be found in the window. The depth value of p would 
be assigned as the average depth of the window. the equation 
can be represented as 

1

1 ,  if  ( ) 1
n

t t'
p qd d T p

n
, (3) 

where n is the pixel number in the window. Another situation is 
that the window is the smooth region but we cannot find any 
pixel similar to p. It means that p may move too fast to stay in 
the window. The missing pixel p is classified as an error denoted 

as 
1, if  ( ) 1 and min ,  

( )
0, else

p q
t

S p I I q
E p . (4) 

2.1.1 Similar Pixel Searching 
To find the most similar pixel corresponding for the pixel p 

on the target frame, we first calculate the color difference 
between p and each q in the window on the Ft'. The color 
absolute difference can be expressed by 

,  , , , , i i i
q p qD I I i R G B a b , (5) 

where i is the index of the color component, which could be 
red, green or blue from RGB space and a or b from CIELab 
space. i

pI  is the intensity value of the ith color component of 
p. i

qI  is the intensity value of the ith color component of the 
compared pixels q on the reference frame. 

Through the depth information of Dt' and hue of Ft', the 
window region could be separated into several color clusters. 
Since using different color space to compute cost, the weights 
are also classified as five types. Furthermore, the weight is 
assigned from different regions which are clustered. In other 
words, each region has its unique weight value. According to 
different color features of each region, the weight can be set as 
the inverse of the standard deviation defined as 

exp( ),  , , , , i i
q qw i R G B a b , (6) 
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q q

q
I I q Z

n
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where σ
i
q  denotes the standard deviation of each q, and Z 

represents the different clusters. When the standard deviations 
of color components are smaller, the weight becomes bigger. 
It means that the color of this region with a small standard 
deviation is more similar. 

To search the similar pixel, it compares target pixel p with 
every q in the window. The cost equation can be represented 
by 

G B
B

1RGB R R G B
q q q q q q qR G

q q q
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, (8) 
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α 1 αTotal RGB ab
q q qC C C , (10) 

where 
RGB
qC  and 

ab
qC  denote as the costs of q in RGB and ab 

color domain, respectively, and α is a weight to adjust the ratio 
of two color spaces. According to the experiment, the weight 
is set as 0.2. 

The pixel with the minimum cost will be the most similar 
pixel to the target pixel p. For the microstructure, the pixel-
wise searching method is not reliable enough.  Moreover, the 
minimum cost pixel may not be single. We assign these pixels 
as the candidate pixels. In order to increase the credibility of 
the result, we further compare the neighbor pixels of the 
candidate pixels and target pixel p. It can help to confirm the 
result is the most similar pixel, not just a noise. The pre-
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requisite to becoming the candidate pixel is that the cost is 
smaller than a threshold. If the minimum cost of the whole 
window is greater than the threshold, p is considered as a 
missing pixel and the depth of p is set as an error. The set of the 
candidate pixels is expressed as 

   arg min τ Total Total
q qq C C , (11) 

where τ is the threshold depicted in (4). The error map of p is 
updated as 

( ) 1,  if min τTotal
t qE p C . (12) 

2.1.2 Candidate Pixel Chosen 
The block cost is calculated by referring to the neighbor eight 

pixels of the target pixel p and the candidate pixels for improving 
accuracy. It is processed by using k-by-k block for computation. 
The block size k is an adaptive value referring to the clusters of 
the window. The value k is set to 3 when the clusters in the 
window are less than 3, otherwise, k is set to 5. The block cost 
of candidate pixels can be expressed as 

,  ,  ,  , i i
cdd p cddC i R G B cddb b , (13) 

where cdd denotes the position of the candidate pixel, and b 
denotes the k-by-k block centered at p or cdd. 

The initial depth assignment adopts the winner takes all 
method. The block with minimum cost would be picked, and 
average depth would assign to the target pixel p. If there is more 
than one pixel being the minimum cost, the averaged depth of 
them are assigned to the target pixel p. The depth value of p is 
calculated as 

1 arg min ,  if  ( ) 0t
p cddd

d C S p
m

, (14) 

where m is the number of candidate pixels whose block cost is 
the minimum color difference of the candidate blocks. 

2.2 Error Compensation Unit 
According to the error map, an error is filled by referring to 

its adjacent eight pixels because the color intensities between the 
errors and the neighbor pixels are similar. When the error pixels 
are on the texture edge, they may cause the inconsistent color 
with the neighbor pixels. The following two cases are proposed: 
If the error pixel is on the edge, the most similar pixel of eight 
neighbors is selected to fill. The other is that we could fill the 
error pixel by using the average of the neighbors which are not 
on the edge. Of course, it also needs to exclude the neighbors 
which are label as errors. 

2.3 Noise Elimination Unit 
After error compensation, we can get an initial depth map. 

However, the results may still exist some noises which look 
redundant and not clean due to computational mistakes. In order 
to remove them, we further proposed a method to make the depth 
smoother. 

It is noted that we have executed SLIC to segment similar 
depth region in computation of the initial depth map. The SLIC 
can group similar pixels together based on color similarity and 
spatial similarity. The initial depth map is divided into several 

groups, as called superpixels. Each group tightly connects 
pixel by pixel, but some noises are classified in a smooth 
superpixel because of spatiality. The noises are detected by 
referring to the normal distribution and standard deviation. If 
the value falling out region of the mean with ±2 standard 
deviations, it would be treated as noise. The new depth value 
would replace by calculating from the reliable pixels in four 
directions, as 

γ
, if 2ρ, 

γ
, else

j j t t
p mean jt

jp
t
p

d
d d d

d
d

, (15)
 

where j denotes the reliable pixels, γj is the weight differing 
from the inverse of the distance to the target pixel, Ψ 
represents the current superpixel, t

meand  is the average depth 
value of the current superpixel, and ρ denotes the standard 
deviation of the current superpixel. 

2.4 Depth Merging Unit 
With the above depth estimation processes, we will obtain 

two depth maps for each non-keyframe by interpolating from 
forward and backward propagations. The depth maps 
generated from different propagated directions must have 
different results. For the same propagated direction, the best 
results must be the closest frame from the keyframe. However, 
one of the two depth maps may have some information that the 
other losses. Instead of selecting the better one from the two 
depth maps, we can refer to both of them. To achieve better 
performance, we would like to merge the two depth maps 
generated by different directions. This paper adopts a simple 
merged method mentioned as 

β (1 β)fw bw
t t tD D D , (16) 

where β is inversely related to the distance from the front 
keyframe to the target frame. 

3 EXPERIMENTAL RESULTS 
The sequences of S02 Poznan Street, S03 Undo Dancer, 

S04 GT Fly, and S10 Shark are utilized in the experiments to 
demonstrate the performance of the system. The frames of the 
sequences are randomly selected during testing. Due to 
multiple steps of this system, we will show the estimated depth 
map of each step individually. Firstly, the improvements of 
errors compensation and noise elimination are shown. 
Secondly, the overall results achieved by the proposed system 
are presented with the ground truth of the keyframes. The 
objective quality of the results is measured in terms of PSNR 
and SSIM performances. 

For depth estimation of the video sequence, the accuracy of 
color matching is very important. Besides, the edge alignment 
is essential to improve the quality. There are aligned edges 
accurately estimated by out proposed system as shown in Fig. 
3. The depth maps obtained from forward and backward 
propagation are fused into the finally depth map. For Fig.4, (a) 
and (b) show the depth maps of frame 11 of estimated forward 
and backward propagation result. We can see that the merged 
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depth map in Fig. 4(c) is tiny difference between forward and 
backward depth maps. 

The depth maps are generated by interpolation from forward 
and backward propagations. For forward propagation, the 
quality of the first frame is better than that of the last frame 
because of error extension. Since there are two depth maps 
obtained in two directional propagations for each frame, we 
make use of their advantages to merge them together. We choose 
a set from each video sequence. The peak signal-to-noise ratio 
(PSNR) and structural similarity (SSIM) are utilized as the 
criterion measurements to analyze the difference among the 
results, which obtained by forward, backward and merging 
estimation, as shown in Table 1. 

4 CONCLUSIONS 
This paper proposed a texture-based depth interpolation 

system, which can interpolate all unknown depth frames 
between two depth keyframes by checking texture similarity of 
all color texture frames through depth estimation, error 
compensation, noise elimination, and depth map merging steps. 
The depth region check for smooth regions is purposed to reduce 
the computational complexity. As for non-smooth regions, it 
takes the multi-level consideration to handle complex situations 
by synthesizing different color spaces information in similarity 
pixel search (SPS) step and it is rigorous to find out the similar 
pixels in the candidate pixel chosen (CPC) step. The 
experimental results confirmed that the errors in the estimated 
depth maps are fewer such that we can simply use the proposed 
error compensation method to achieve good results. To make the 
depth smoother, the orphaned pixels are eliminated based on the 
concept of superpixels. The bi-directional propagation can not 
only overcome the occlusion of the object but also handle the 
zoom in/out circumstance.  From experimental results, it can be 
apparently observed that the depth maps are generated 
successfully. The processed results from depth estimation, error 
compensation to noise elimination show their own effectiveness 
and better in step-by-step. Final results show that the edges of 
the objects between the texture and the depth are well aligned. 
Generally, the proposed 3D depth interpolation system can 
produce high-quality 3D videos from 2D videos and depth 
keyframes, which can be usually obtained from software 
package. 
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Fig. 3. Frame #221 of S10 “Shark”: (a) texture image and 
(b) estimated depth map; Frame #111 of S03 “Undo 

Dancer”: (c) texture image and (d) estimated depth map 
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Fig. 4. The depth maps of “Poznan Street” at frame #11: 
(a) forward propagation result; (b) backward propagation 
result; (c) merging result and (d) ground truth 

Table 1. PSNR and SSIM results of “Poznan Street” 

Frame 
PSNR (dB) 

FW BW MG 
103 35.9526 33.0686 36.3431 
104 34.6240 33.4985 35.4313 
105 33.8662 33.8996 35.1049 
106 33.7258 34.9447 35.7723 
107 32.9865 35.6910 36.0038 

 SSIM 
103 0.9118 0.8763 0.9229 
104 0.8929 0.8803 0.9164 
105 0.8839 0.8852 0.9161 
106 0.8789 0.8940 0.9171 
107 0.8746 0.9107 0.9219 
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