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ABSTRACT 

We propose a reconstruction method for single-pixel 
imaging. Recently, reconstruction methods using deep 
neural networks have been studied. However, these 
methods need much calculation. In this paper, we 
investigated to reconstruct images from a single-pixel 
device using a recurrent neural network and decrease the 
calculation amount.   

1 INTRODUCTION 
Single-pixel imaging is a unique technique in terms of 

using a single element photodetector. We show a 
schematic of the method in Fig.1. The method 
reconstructs two- or three-dimensional images from one-
dimensional sequence data that are light intensity 
obtained by illuminating the object with specific patterns. 
This technique has various methods for the reconstruction 
process: for example, correlation-based methods called 
“ghost imaging” (GI) [1-4], methods using basis patterns 
such as Hadamard and Fourier bases [5], and optimization 
methods [6,7]. The methods [1-5] require a lot of 
measurement time to obtain better image quality and the 
methods [6,7] require the calculation time for the iterative 
optimization. For that reason, high-speed single-pixel 
imaging, such as using an FPGA [8], has been studied. In 
recent years, among them, reconstruction methods using 
deep neural networks [9,10] based on convolutional neural 
networks (CNNs) get much attention. The methods have 
an advantage that an image can be reconstructed with 
fewer measurements than previous methods. However, 
the methods have a disadvantage that the calculation 
amount is significant for high-speed imaging.   

In this study, we proposed a recurrent neural network 
(RNN)-based reconstruction from a single-pixel device 
and verified the image quality and the calculation amount.   

 
Fig. 1 Schematic of single-pixel imaging. 

2 PROPOSED METHOD 
An RNN is one of deep neural networks. We show a 

schematic of an RNN structure in Fig.2. An RNN has 
some features. For example, it has a recursive network 
structure. Compared to CNNs, an RNN can treat time 
series data because of this feature and can decrease 
network parameters while keeping deep layers. 
Therefore, for single-pixel imaging, an RNN has the 
possibility of reconstruction with fewer measurements 
than other methods without increasing the calculation 
amount.  

 
Fig. 2 Schematic of RNN. 

 
In fig.2, x(t), h(t), and y(t) represent the values of the 

input layer, hidden layer, and output layer at time t. Let 
U be the weight between the input layer and hidden layer, 
V be between the hidden layer and output layer, and W 
be the past hidden layer and current hidden layer. We 
show a mathematical model of the hidden layer in Eqs. 
(1) and (2). We show a mathematical model of the output 
layer in Eqs. (3) and (4). 

 ( ) ( ) ( 1)t t tU W bp x h   (1) 

 ( ) ( ( ))t f th p   (2) 

 ( ) ( )t tVq h c   (3) 

 ( ) ( ( ))t g ty q   (4) 
The biases to the hidden layer and output layer are b and 
c. f(r) and g(r) represent activation functions of the 
hidden layer and output layer. p(t) is the output of the 
input layer before the activation function f(r). Also, q(t) is 
the output of the hidden layer before the activation 
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function g(r).  We adopted ReLU function as f(r) and Leaky 
ReLU function as g(r) because the output is an image data.  

2.1 Dataset 
We use “MNIST” as original images to verify the 

effectiveness of the proposed method. “MNIST” is image 
dataset including handwritten digits from zero to nine. The 
input data is one-dimensional time series data obtained by 
simulating the physical process in Fig.1. The output data 
is reconstructed images. We used the training data that 
consist of the time-series data and corresponding ground-
truth image.  

2.2 Single pixel imaging using RNN 
We show a schematic of the proposed method in Fig.3. 

First, we obtain a time series data of object lights from an 
MNIST object by illuminating patterns. The calculation of 
an object light can be expressed as 

 ( , ) ( , ) ( 1,2 )i iS T x y I x y dxdy i n)n ,   (5) 

where  is the light intensity distribution of the 
illumination patterns, and  denotes a distribution of 
object light. The subscript indicates the i-th pattern. 
Second, we input the time series data  of the object light 
to the RNN. Finally, we obtain a reconstructed image from 
the RNN. 

 
Fig. 3 Schematic of the proposed method. 

 

3 RESULTS 
First, we show the comparison of a CNN calculation 

time and the RNN calculation time. For the computing 
environment, we used Intel CoreTM i5 4690 (clock 
frequency 3.50 GHz) as the CPU, a memory of 8.0 GB, 
Microsoft Windows 10 education as the operating system, 
NVIDIA Geforce GTX 980 as the GPU, and Microsoft 
Visual Studio C ++ 2015 as the compiler. The average 
calculation times for the CNN and the RNN are given in 
Table 1. There is no much difference between each 
calculation time.  

 
Table 1 calculation time per image 

 CNN RNN 
Calculation time 86[μs] 95[μs] 

 
Next, we show the comparison of original images and 

the reconstructed images using the proposed method in 
Fig. 4. The number of illumination patterns is 256. These 

images are outputted as a grayscale with 8-bit. Figs. 4(a) 
and (b) show the original images and reconstructed 
images, respectively. As we can see from Fig.4, all the 
images could be reconstructed accurately. It shows that 
an RNN can reconstruct images from time-series data 
obtained with a single element detector.  

 
(a) Original images. 

 
 

 
(b) Reconstructed images. 

Fig. 4 Original and reconstructed images. 
 
Finally, we evaluated the image quality of 

reconstructed images from the RNN. Fig. 5 shows each 
reconstructed image using a conventional GI, a CNN, 
and the proposed method. Figs. 5(a)-(d) show an original 
image and the reconstructed images obtained by using 
the GI, a CNN and the proposed method. Table 2 shows 
the quantitative evaluation of Fig.5. We use peak signal-
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to-noise ratio (PSNR) and structural similarity (SSIM) as 
the image quality index. The GI reconstruction does not 
have good image quality because the number of the 
illumination patterns is small. In contrast, the CNN and 
RNN can reconstruct better image quality even though the 
number of the illumination patterns is the same as the GI 
method. In addition, the reconstructed image obtained by 
the RNN is better than that of the CNN. Considering that 
the calculation times for the RNN and CNN are almost the 
same, it shows the effectiveness of the proposed method.  

 

 
Fig. 5 evaluation image quality 

 
Table 2 quantitative evaluation 

 GI CNN RNN 
PSNR (dB) 8.73 15.73 17.59 
SSIM 0.30 0.80 0.88 

 

4 CONCLUSIONS 
We proposed a reconstruction method for single-pixel 

imaging using an RNN. We succeeded in reconstructing 
images using an RNN from time-series data. In future work, 
we try to reconstruct more complicated images with 
grayscale and implement our approach in a real optical 
system.  
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