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ABSTRACT
3D technology with range information has become a

staple requirement in computer vision. For this reason, we 
believe that the depth information can effectively improve 
the vision capabilities for many applications. In this paper, 
we proposed an unsupervised monocular depth 
estimation network to extract the depth map of street views.

1 INTRODUCTION
To get depth maps from a single view image, which is 

known as monocular depth estimation, is an important 
technique in computer vision with a long history. It is often 
described as an ill-posed and inherently ambiguous 
problem. Most existing approaches treat the depth 
prediction as a supervised regression problem as a result, 
they require vast quantities of corresponding ground truth 
depth data for training [1]-[4]. However, to collect those 
ground truth data is time consuming. Motivated by [2], we 
adopt stereo images as our training data, and compute the 
reconstruction loss according to the disparity maps which 
are the output of the network. As the result, we use transfer 
learning to pretrain the network with limited edge ground 
truth, and then use large amount of stereo training data to 
fine the network in an unsupervised way during training. 
We can replace the use of explicit depth data with easier-
to-obtain binocular stereo footage. Generating disparity 
images by training the network with an image 
reconstruction loss in an unsupervised way is more 
reasonable without complete data sets. 

Moreover, the most existing developments of 
unsupervised monocular depth estimation (MDE) suffer 
from the problem of blurring depth maps. To overcome this 
problem, inspired by [3], we thus add some edge 
information of the ground truth depth to train the whole 
model in a semi-supervised way. As aforementioned, 
recording quality depth data is a challenging problem.

2 RELATED WORK
The depth estimation networks generally can be 

separated as supervised monocular depth estimation and 
unsupervised monocular depth estimation. The most 
common way is to treat it as a supervised regression 
problem. Eigen [1] has proposed a network that produces 
dense pixel depth maps using a two-scale DCNN, trained 
with images and their corresponding depth value. Several 
later proposed networks have been designed based on 
this method. The supervised method has great 

performance but needs a great deal of data. 
In order to overcome the disadvantage of collection of 

ground truth data. Godard [2] has introduced an 
unsupervised network using the epipolar geometry 
constraints, which is the property of binocular stereo 
images, and have trained the network with an image
reconstruction loss. The reconstruction process is to 
generate a synthetic right view image according to the 
left view and its estimated disparity with the technique of 
wrapping. Because the binocular visual database of 
street view is difficult to collect. So, we proposed an 
unsupervised depth estimation network with the edge 
guided network to overcome the problem.

3 THE PROPOSED SYSTEM
In the proposed system, as illustrate in Fig. 1, the 

depth estimation is based on two sub networks, the 
unsupervised depth estimation network and the edge 
guided network. IL stands for the input image, and DL, DR,
Eh, Ev are the corresponding output, which represent 
estimated disparity, estimated horizontal edge and 
vertical edge respectively.
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Fig. 1 Proposed edge guided semi-supervised 
monocular depth estimation system.

3.1 Unsupervised Depth Estimation Network
Inspired by [2], the target of our depth estimation 

network is to estimate two kinds of disparity maps, 
disparity of left and right view image, denoted as DL =
[D1L, D2L, D3L, D4L] and DR = [D1R, D2R, D3R, D4R]
separately. The disparity maps can reconstruct synthetic 
images by doing wrapping and further infer the depth 
maps as seen in Fig. 3. 

To compute the differences between synthetic images 
and input images according to the reconstruction 
process, we treat our depth estimation network as an
unsupervised network. The reconstruction process also
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Fig. 2 Details of the whole network
shows that we need stereo input images during training 
but require only one-view images in testing. Furthermore, 
our depth estimation network, shown in Fig. 2, is 
composed of an hourglass network, which is divided into 
two parts - encoder and decoder. The upper part of our 
network is the depth estimation network, composed of an 
encoder modular with seven convolutional blocks, which 
implement downscaling each block with stride-two 
convolution, and a decoder modular with seven 
deconvolution blocks. The lower part is the edge-guided 
network with four convolutional layers. We also use the 
concept of U-net [5] to deploy skip connections between 
every pair of corresponding layers, which can avoid losing 
lower features during multiple convolutional layers. 
Following [6], we replaced the usual deconvolutions with a 
nearest neighbor upscaling followed by a convolutional 
layer to reduce the chessboard effect.

Fig. 3 The image reconstruction process of backward 
mapping

3.2 Edge Guided Network
The edge guided network is designed to emphasize 

contour regions, since our target is to reduce the blurry 
effect of objects’ contour. Considering that we hope our 
network to learn the features of edge, instead of directly 
using limited depth ground truth, we generate the 
horizontal and vertical edge ground truth by Sobel edge 
detection. In remind of the fact that our architecture is 

mainly applied on autonomous driving, we need to keep 
the processing in real-time. We also suppose that 
extracting edge features might not be too complex in 
compares with extracting other features that can 
generate depth maps. Thus, we use only few 
convolutional layers, as illustrate in Fig. 1, pipelining with 
the decoder of depth estimation network to refine our 
final depth. 

However, monocular depth estimation relies on large 
amount of training data to compensate the lack of 
geometry constrain. Training the whole network with a 
few binocular images and their corresponding ground 
truth such as Scene Flow Dataset, can’t achieve proper 
results. As aforementioned, we then take the advantages 
of transfer leaning to freeze weights in edge guided 
network, and further train the whole network with larger 
datasets such as KITTI Dataset [7].

3.3 Training Loss
Our total loss L is a weighted sum of four losses, 

which are appearance matching loss, disparity 
smoothness loss, left-right disparity consistency loss, 
and edge feature loss. The value of each are set as 

ap = 0.85, ds = 0.1, lr = 1, ef = 0.5, empirically.
 ( ) ( ) ( )L R L R L R

ap ap ap ds ds ds lr lr lr ef efL C C C C C C C ,(1)
where Cap, Cds, Clr, and Cef are appearance matching,
disparity smoothness, left-right consistency, and edge 
feature lose respectively; R and L denote the right and 
left view. The detail will be discussing in following.

Appearance Matching Loss
We integrate the image sampler from the spatial 

transformer network (STN) [8] into our convolutional 
architecture. The STN, which features locally fully 
differentiable, can be used to sample input images using 
disparity maps according to bilinear sampling. To robust 
our network, the appearance matching loss of depth map 
is the weighted sum of four different resolutions, that 
leads to more stable convergence. Inspired by [9], we 
use a combination of an L1 loss and single scale 
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structural similarity index (SSIM) [10] term as our 
photometric image reconstruction cost. As L1 loss, we 
compare the input image IijL with its reconstruction L

ijI as

,

1 ( , )1 (1 )
2

L L
ij ijL L L

ap ij ij
i j

SSIM I I
C I I

N ,  (2)
where N is the number of pixels and (i, j) denotes the
location of reliable pixel and is set to be 0.85.

Disparity Smoothness Loss
The disparity smoothness loss is designed to make 

depth map locally smooth.

,

1 L L
x ij y ijI IL L L

ds x ij y ij
i j

C d e d e
N ,    (3)

where dij denotes the disparity locate on pixel (i, j).
Edge Feature Loss
While generating the edge ground truth, gtv and gth, we 

record the gradient value in vertical and horizontal 
direction. Since that, the value of areas which does not 
seem to be edge is set to be zero. The outputs of our depth 
estimation network and edge guided network are kind of 
mutual conflict. So, we ignore the zero-value regions 
instead of directly computing the loss with whole image.

2 2

,

1 v v v h h h
ef ij ij ij ij ij ij

i j
C E gt gt E gt gt

N ,  (5)

4 EXPERIMENT
The proposed network, which contains 31.7 million 

trainable parameters, is implemented in TensorFlow and 
takes about 9 hours to train. Using GPU-1080Ti on Scene 
Flow Dataset of 4 thousand images for 80 epochs with 
batch size 4. The inference is fast and takes less than 38 
ms, or more than 26 frames per second, for a 512×256 
image, which is nearly real-time. We used an initial 

4, which is kept constant for the first 
30 epochs before halving it every 10 epochs until the end.

During the wrapping process, it is instinct that we might 
face the problem of occlusion and disocclusion.  We 
operate some post-processing on the output. For an input 
image I at test time, we also compute the disparity map DI’
for its horizontally flipped image I’. By flipping back this 
disparity map we obtain a disparity map DI”. And for the 
final result, we assign the first 5% on the left of the image 
using DI” and the last 5% on the right to the disparities from 
DI. The central part of the final disparity map is the average 
of DI and DI’. As illustrated in Fig. 4., after adding the edge 
guided network, all the contours in the images is much 
clearer. 

We restore the pretrain weights of former network, and
then freeze all the weights in edge guided network. In this 
part, we adopt nearly 30 thousand training data in KITTI 
Dataset as our training data. Following by its high 
resolution and large amount of data, we can improve the 
accuracy comparing to only training with Scene Flow 
Dataset. As showed in Fig. 5, the proposed network makes 
the contours of objects be more complete such that it leads

to a more precise result.

5 CONCLUSIONS
The most existing developments of MDE have the 

problem of blurring depth maps. The proposed method 
adds some edge information to improve the 
completeness of feature data to obtain more precise 
depth maps. Furthermore, the proposed network can be 
trained the whole model in a semi-supervised way to 
reduce the data requirement.

Fig. 4 Testing results after training 80 epochs on 
Scene Flow Dataset

Fig. 5 Testing results after futrher training on KITTI 
Dataset.
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