

Comparison of Hologram Calculation Implementations for
Wavefront Recording Plane Method Using Look-up Table

Method and Direct Calculation Method
Hidenari Yanagihara, Tomoyoshi Shimobaba, Takashi Kakue, Tomoyoshi Ito

Graduate School of Engineering, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan
Keywords: electro-holography, computer-generated hologram, wavefront recording plane, look-up table

ABSTRACT

We evaluated calculation times of computer-generated
holograms based on wavefront recording plane method
using several implementations in the combination of look-
up table method and direct calculation method in order to
realize real-time electro-holography system. We
confirmed that there are different characteristics between
CPU and GPU implementations.

1 INTRODUCTION
Three-dimensional (3D) displays [1,2] are promising

techniques for realizing a surgical-support system in the
medical field and next-generation 3D television systems.
Among 3D displays, we focus on electro-holographic
displays [3-5] which can reconstruct moving pictures by
displaying holograms on a spatial light modulator (SLM).
Holograms displayed on the SLM, which is referred as to
computer-generated holograms (CGHs), can be
generated by a numerical simulation of light on a computer.
A direct calculation method for generating point-cloud-
based CGH superposes the complex amplitude of light
emitted from 3D object points using integral equations.

Realizing a real-time holographic 3D display is
necessary to accelerate CGH calculation. Many methods
have been reported to accelerate CGH calculation, such
as dedicated hardware for point-cloud-based CGH
calculation [6], look-up table (LUT) method [7], and
wavefront recording plane (WRP) [8] method. In the CGH
calculation by the dedicated hardware in Ref. [6], a CGH
is calculated by running many dedicated processors in
parallel. In the LUT method of Ref. [7], we pre-calculate
complex amplitudes emitted from single object points with
different axial distances and store them in the LUT.
Subsequently, these complex amplitudes are superposed
by reading from the LUT according to the coordinate
information of the 3D objects.

In CGH calculations by using the LUT method and the
direct calculation method, it has not been detailed whether
the two methods had different characteristics. In this paper,
we aim to compare the CGH calculations by using the LUT
method and direct calculation method. In addition, we
apply these implementations to the WRP method and
evaluate them.

2 METHOD

2.1 Wavefront recording plane (WRP)
In electro-holography, information about 3D object is

recorded as CGHs by calculating the propagation and
interference of light on a computer. In our study, we
considered 3D objects as point cloud and used the WRP
method to accelerate CGH calculation. Figure 1 shows
the schematic diagram of the WRP method. In the first
step, we place a WRP close to the 3D objects and record
the complex amplitude of the 3D objects in the WRP. The
complex amplitude formed on the WRP, ,
can be expressed by

 (1)

where denote the coordinates on the WRP,
 denote the coordinates of the j-th point-light

source of the 3D objects, denotes the
perpendicular distance between the WRP and j-th point-
light source, denotes the number of point clouds,
denotes the imaginary unit, and denotes the
wavelength of light wave. In the second step, we
calculate the light propagation from the WRP to the CGH
using the Fresnel diffraction.

The radius of the spreading region for the j-th point-
light source on the WRP, , can be expressed as
follows:

 (2)

where denotes the maximum
diffraction angle for reconstructing the 3D objects and
denotes the pixel pitch of the CGH. We need to judge
whether the object light passes through the circular
region with the radius during the CGH calculation or
not. In our study, we set the square region inscribed in
the circular region shown in Fig. 1(b) to mitigate the
judgment of the circular region. The side length of the
square region, , can be expressed as

 (3)

The average of for all the 3D object points, , can be

3DSAp2/3Dp2 - 20L
(Late-News Paper)

ISSN-L 1883-2490/26/0191 © 2019 ITE and SID IDW ’19 191

expressed as

 (4)

In our study, we performed CGH calculation using the
square region shown in Fig. 1(b).

(a) Outline of the WRP method. (b) Calculation region.

Fig. 1: Schematic diagram of the WRP method.

2.2 Look-up table (LUT)
In the LUT method, we store the complex amplitudes,

which are pre-calculated by using Eq. (1) and , into the
LUT. Figure 2 shows the schematic diagram of the LUT
method. and denote the number of WRP pixels,
respectively. When the LUT size is pixels and the
number of the depth is , the amount of memory for the
LUT requires . We accumulate the complex
amplitude while reading from the LUT. As shown in Fig.
2(b), we determine the calculation region in the WRP by
using , , , and which are parameters of the 3D
objects.

(a) Outline of the LUT method. (b) Calculation region.

Fig. 2: Schematic diagram of the LUT method.

2.3 Accumulation of the complex amplitude
As shown in Fig. 3, there are two methods for

accumulating complex amplitudes: “Scatter” and “Gather”.
In “Scatter” as shown in Fig. 3(a), we accumulate a
complex amplitude on the WRP emitted from a single
object point, and then we repeat the same procedure for
next object points. We determine the calculation region of
the complex amplitude in the WRP by using , , , and

 which are parameters of the 3D objects. Because the

calculation region is different for each object point, the
amount of memory writing requires . This
accumulation can be implemented by both direct
calculation method of Eq. (1) and LUT method.

In “Gather” as shown in Fig. 3(b), we calculate a WRP
pixel by accumulating the light wave emitted from all the
object points, and we repeat this procedure for all the
WRP pixels. In this calculation, we need to determine
which object points pass through the WRP pixels.
Because the complex amplitudes are accumulated for
each WRP pixel, the amount of memory writing requires

. This accumulation can only be implemented by
direct calculation method of Eq. (1).

(a) Scatter. (b) Gather.

Fig. 3: Schematic diagram of accumulating the
complex amplitude.

3 EXPERIMENT
In this study, we compared the direct calculation

method of Eq. (1) with the LUT method. We evaluated
the calculation times by changing the number of object
points . We used Microsoft Windows 10 Enterprise as
an operating system, a CPU (Intel Core i7-6700 with 3.4
GHz), and a GPU (GeForce GTX 1080). We used
Microsoft Visual Studio Enterprise 2015 [9] and
computer unified device architecture (CUDA) [10] as
integrated development environments for the PC and
GPU, respectively.

We set the resolution of the WRP to ,
the resolution of LUT to , and the depth of
LUT to . We set the distance between the WRP
and the CGH to , the depth range of the 3D
objects to , the pixel pitch to

, and the wavelength of light to . Table 1
shows the symbols of the combination of calculation
methods and hardware.

Next, we explain the accumulation of the complex
amplitude in GPU implementation. For parallel
processing using CUDA, we need to set the number of
threads that form a “block” and the number of blocks that
form a “grid”. In our study, we parallelized the pixels of
WRP. Figure 4 shows the schematic diagram of the
accumulation in GPU implementation. and denote
the number of pixels (threads) in a block, and and
denote the number of blocks in a grid. In our study, we
set the number of threads to . If light wave
emitted from an object point is distributed as the red
dashed circle in Fig. 4(a), we approximate the circle

WRP

CGH

Object points

: Square region

: Circular region

LUT

: Circular region

: Square region

: LUT size

WRP

Object points Object points

WRP WRP

192 IDW ’19

region as the yellow square region. Subsequently, the
square region is divided into blocks as shown in Fig. 4(b).
The GPU calculates the complex amplitude in each block
in parallel.

The number of blocks is different between the “Scatter”
and “Gather” implementations. In the “Scatter”
implementation, the passing region of light as shown in Fig.
4(a) was formed within the LUT. Therefore, the number of
blocks was and . The
“Gather” implementation must determine whether a
complex amplitude calculation in a WRP pixel is required.
Therefore, the number of blocks was
and .

Table 1: Symbols of the combination of calculation
methods and hardware.

 Symbol Combination

CPU

C1
Direct calculation method of Eq. (1)
by using “Scatter” with a CPU

C2
LUT method by using “Scatter” with
a CPU

C3
Direct calculation method of Eq. (1)
by using “Gather” with a CPU

GPU

G1
Direct calculation method of Eq. (1)
by using “Scatter” with a GPU

G2
LUT method by using “Scatter” with
a GPU

G3
Direct calculation method of Eq. (1)
by using “Gather” with a GPU

(a) Passing region of light. (b) Operation block.

Fig. 4: Accumulating calculation in GPU
implementation.

4 RESULT
We used a 3D object consisting of 978,416 points. We

changed the number of object points by randomly
sampling the 3D object [11], and we evaluated the
calculation times between the 3D object and WRP. Prior
to the calculation, we sorted coordinate information of the
3D object to increase the locality of the object points,
leading to an improvement of the cache memory efficiency.

First, we consider the results of each CPU
implementation as shown in Table 1. Figure 5 shows the
relationship between the number of object points and the
calculation time. We confirmed that the implementation
of C2 (the combination of the “Scatter” and the LUT
method) achieved the shortest calculation time among
the three implementations. Because the cache memory
is well work for this small amount of the LUT, the
implementation of C2, which has a small number of
arithmetic operations compared to the implementations
of C1 and C3, had the shortest calculation time among
the three implementations.

Next, we consider the results of the GPU
implementation as shown in Table 1. Figure 6 shows the
relationship between the number of object points and the
calculation time. We confirmed that the implementations
of G1 and G3 by the direct calculation method have
shorter calculation times than that of G2 by the LUT
method. This is a different result in comparison with the
CPU implementation. The calculation speed of arithmetic
operations in a GPU is generally faster than the access
speed to the global memory on a GPU board. In the
implementation of G2, the complex amplitude is read
from the LUT memory stored in the global memory.
Therefore, the implementation of G2 by the LUT method
took longer calculation time than those of G1 and G3 by
the direct calculation method of Eq. (1).

Table2 shows the calculation times between the 3D
objects and WRP in the number of object points

. We confirmed that the LUT method has a lower
speed-up ratio than the direct calculation method
because most of the calculation times occupied by
memory access.

Fig. 5: Relationship between the number of object

points and the calculation time with a CPU.

: Block (pixels)
: Passing region
: Square region
: Operation block

0

10

20

30

40

50

60

70

80

0 100 200 300 400 500 600 700

C
al

cu
la

tio
n

tim
e

[s
]

Number of object points (x1,024)

C1 C2 C3

IDW ’19 193

Fig. 6: Relationship between the number of object

points and the calculation time with a GPU.

Table 2: Calculation time between the 3D objects and
WRP ().

Symbol Calculation time [ms]
C1 1,561
C2 866
C3 17,123
G1 90
G2 102
G3 95

5 CONCLUSIONS
In this study, we confirmed that the CPU

implementation by using the combination of the “Scatter”
and the LUT method is better than other implementations,
and the GPU implementation by using the direct
calculation method is better than those by using the LUT
method. In future works, by changing the distance from the
3D objects to WRP, we will evaluate calculation times
changing the distance from the 3D objects to WRP.

ACKNOWLEDGMENT
This work was partially supported by JSPS KAKENHI

Grant Numbers 19H04132 and 19H01097.

REFERENCES
[1] G. Lippmann “Epreuves reversible. Photographies

integrals,” C. R. Acad. Sci. 146, 446-451 (1908).
[2] S. Lee, J. Park, J. Heo, B. Kang, D. Kang, H. Hwang,

J. Lee, Y. Choi, K. Choi, and D. Nam,
“Autostereoscopic 3D display using directional
subpixel rendering,” Opt. Express 26, 20233-20247
(2018).

[3] P. S. Hilaire, S. A. Benton, M. Lucente, M. L. Jepsen,
J. Kollin, H. Yoshikawa, and J. Underkoffle,
“Electronic display system for computational
holography,” Proc. SPIE 1212, 174-182 (1990).

[4] Z. Zhang, C. P. Chen, Y. Li, B. Yu, L. Zhou, and Y.
Wu, “Angular multiplexing of holographic display
using tunable multi-stage gratings,” Mol. Cryst. Liq.
Cryst. 657, 102-106 (2017).

[5] H. Yanagihara, T. Kakue, T. Shimobaba, and T. Ito,
“Real-time three-dimensional video reconstruction of
real scenes with deep depth using electro-
holographic display system,” Opt. Express 27,

15662-15678 (2019).
[6] T. Sugie, T. Akamatsu, T. Nishitsuji, R. Hirayama,

N. Masuda, H. Nakayama, Y. Ichihashi, A. Shiraki,
M. Oikawa, N. Takada, Y. Endo, T. Kakue, T.
Shimobaba, and T. Ito, “High-performance parallel
computing for next-generation holographic imaging,”
Nature Electron. 1, 254-259 (2018).

[7] Y. Pan, X. Xu, S. Solanki, X. Liang, R. B. A. Tanjung,
C. Tan, and T. C. Chong, “Fast CGH computation
using S-LUT on GPU,” Opt. Express 17, 18543-
18555 (2009).

[8] T. Shimobaba, N. Masuda, and T. Ito, “Simple and
fast calculation algorithm for computer-generated
hologram with wavefront recording plane,” Opt. Lett.
34, 3133-3135 (2009).

[9] Visual Studio, https://visualstudio.microsoft.com.
[10] CUDA, https://developer.nvidia.com/cuda-zone.
[11] H. Yanagihara, T. Kakue, T. Shimobaba, and T. Ito,

“Real-Time 3D Image Reconstruction System of
Real-Scenes by Electro-Holography using 3D
Objects Acquired with Kinect,” Proceedings of The
10th International Conference on 3D Systems and
Applications, HT-4 (2018).

0

50

100

150

200

250

300

350

400

0 100 200 300 400 500 600 700

C
al

cu
la

tio
n

tim
e

[m
s]

Number of object points (x1,024)

G1 G2 G3

194 IDW ’19

