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ABSTRACT 

We evaluated calculation times of computer-generated 
holograms based on wavefront recording plane method 
using several implementations in the combination of look-
up table method and direct calculation method in order to 
realize real-time electro-holography system. We 
confirmed that there are different characteristics between 
CPU and GPU implementations.  

1 INTRODUCTION 
Three-dimensional (3D) displays [1,2] are promising 

techniques for realizing a surgical-support system in the 
medical field and next-generation 3D television systems. 
Among 3D displays, we focus on electro-holographic 
displays [3-5] which can reconstruct moving pictures by 
displaying holograms on a spatial light modulator (SLM). 
Holograms displayed on the SLM, which is referred as to 
computer-generated holograms (CGHs), can be 
generated by a numerical simulation of light on a computer. 
A direct calculation method for generating point-cloud-
based CGH superposes the complex amplitude of light 
emitted from 3D object points using integral equations.  

Realizing a real-time holographic 3D display is 
necessary to accelerate CGH calculation. Many methods 
have been reported to accelerate CGH calculation, such 
as dedicated hardware for point-cloud-based CGH 
calculation [6], look-up table (LUT) method [7], and 
wavefront recording plane (WRP) [8] method. In the CGH 
calculation by the dedicated hardware in Ref. [6], a CGH 
is calculated by running many dedicated processors in 
parallel. In the LUT method of Ref. [7], we pre-calculate 
complex amplitudes emitted from single object points with 
different axial distances and store them in the LUT. 
Subsequently, these complex amplitudes are superposed 
by reading from the LUT according to the coordinate 
information of the 3D objects.  

In CGH calculations by using the LUT method and the 
direct calculation method, it has not been detailed whether 
the two methods had different characteristics. In this paper, 
we aim to compare the CGH calculations by using the LUT 
method and direct calculation method. In addition, we 
apply these implementations to the WRP method and 
evaluate them.  

2 METHOD 

2.1 Wavefront recording plane (WRP) 
In electro-holography, information about 3D object is 

recorded as CGHs by calculating the propagation and 
interference of light on a computer. In our study, we 
considered 3D objects as point cloud and used the WRP 
method to accelerate CGH calculation. Figure 1 shows 
the schematic diagram of the WRP method. In the first 
step, we place a WRP close to the 3D objects and record 
the complex amplitude of the 3D objects in the WRP. The 
complex amplitude formed on the WRP, , 
can be expressed by  

 (1) 

where  denote the coordinates on the WRP, 
 denote the coordinates of the j-th point-light 

source of the 3D objects,  denotes the 
perpendicular distance between the WRP and j-th point-
light source,  denotes the number of point clouds,  
denotes the imaginary unit, and  denotes the 
wavelength of light wave. In the second step, we 
calculate the light propagation from the WRP to the CGH 
using the Fresnel diffraction. 

The radius of the spreading region for the j-th point-
light source on the WRP, , can be expressed as 
follows: 

  (2) 

where denotes the maximum 
diffraction angle for reconstructing the 3D objects and  
denotes the pixel pitch of the CGH. We need to judge 
whether the object light passes through the circular 
region with the radius  during the CGH calculation or 
not. In our study, we set the square region inscribed in 
the circular region shown in Fig. 1(b) to mitigate the 
judgment of the circular region. The side length of the 
square region, , can be expressed as  

  (3) 

The average of  for all the 3D object points, , can be 
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expressed as  

  (4) 

In our study, we performed CGH calculation using the 
square region shown in Fig. 1(b).  

 
(a) Outline of the WRP method.  (b) Calculation region. 

Fig. 1: Schematic diagram of the WRP method. 

2.2 Look-up table (LUT) 
In the LUT method, we store the complex amplitudes, 

which are pre-calculated by using Eq. (1) and , into the 
LUT. Figure 2 shows the schematic diagram of the LUT 
method.  and  denote the number of WRP pixels, 
respectively. When the LUT size is  pixels and the 
number of the depth is , the amount of memory for the 
LUT requires . We accumulate the complex 
amplitude while reading from the LUT. As shown in Fig. 
2(b), we determine the calculation region in the WRP by 
using , , , and which are parameters of the 3D 
objects. 

 
(a) Outline of the LUT method.  (b) Calculation region. 

Fig. 2: Schematic diagram of the LUT method. 

2.3 Accumulation of the complex amplitude 
As shown in Fig. 3, there are two methods for 

accumulating complex amplitudes: “Scatter” and “Gather”. 
In “Scatter” as shown in Fig. 3(a), we accumulate a 
complex amplitude on the WRP emitted from a single 
object point, and then we repeat the same procedure for 
next object points. We determine the calculation region of 
the complex amplitude in the WRP by using , , , and 

 which are parameters of the 3D objects. Because the 

calculation region is different for each object point, the 
amount of memory writing requires . This 
accumulation can be implemented by both direct 
calculation method of Eq. (1) and LUT method. 

In “Gather” as shown in Fig. 3(b), we calculate a WRP 
pixel by accumulating the light wave emitted from all the 
object points, and we repeat this procedure for all the 
WRP pixels. In this calculation, we need to determine 
which object points pass through the WRP pixels. 
Because the complex amplitudes are accumulated for 
each WRP pixel, the amount of memory writing requires 

. This accumulation can only be implemented by 
direct calculation method of Eq. (1).   

 
(a) Scatter. (b) Gather. 

Fig. 3: Schematic diagram of accumulating the 
complex amplitude. 

3 EXPERIMENT 
In this study, we compared the direct calculation 

method of Eq. (1) with the LUT method. We evaluated 
the calculation times by changing the number of object 
points . We used Microsoft Windows 10 Enterprise as 
an operating system, a CPU (Intel Core i7-6700 with 3.4 
GHz), and a GPU (GeForce GTX 1080). We used 
Microsoft Visual Studio Enterprise 2015 [9] and 
computer unified device architecture (CUDA) [10] as 
integrated development environments for the PC and 
GPU, respectively. 

We set the resolution of the WRP to , 
the resolution of LUT to , and the depth of 
LUT to . We set the distance between the WRP 
and the CGH to , the depth range of the 3D 
objects to , the pixel pitch to 

, and the wavelength of light to . Table 1 
shows the symbols of the combination of calculation 
methods and hardware. 

Next, we explain the accumulation of the complex 
amplitude in GPU implementation. For parallel 
processing using CUDA, we need to set the number of 
threads that form a “block” and the number of blocks that 
form a “grid”. In our study, we parallelized the pixels of 
WRP. Figure 4 shows the schematic diagram of the 
accumulation in GPU implementation.  and  denote 
the number of pixels (threads) in a block, and  and  
denote the number of blocks in a grid. In our study, we 
set the number of threads to . If light wave 
emitted from an object point is distributed as the red 
dashed circle in Fig. 4(a), we approximate the circle 
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region as the yellow square region. Subsequently, the 
square region is divided into blocks as shown in Fig. 4(b). 
The GPU calculates the complex amplitude in each block 
in parallel. 

The number of blocks is different between the “Scatter” 
and “Gather” implementations. In the “Scatter” 
implementation, the passing region of light as shown in Fig. 
4(a) was formed within the LUT. Therefore, the number of 
blocks was  and . The 
“Gather” implementation must determine whether a 
complex amplitude calculation in a WRP pixel is required. 
Therefore, the number of blocks was  
and . 

Table 1: Symbols of the combination of calculation 
methods and hardware. 

 Symbol Combination 

CPU 

C1 
Direct calculation method of Eq. (1) 
by using “Scatter” with a CPU 

C2 
LUT method by using “Scatter” with 
a CPU 

C3 
Direct calculation method of Eq. (1) 
by using “Gather” with a CPU 

GPU 

G1 
Direct calculation method of Eq. (1) 
by using “Scatter” with a GPU 

G2 
LUT method by using “Scatter” with 
a GPU 

G3 
Direct calculation method of Eq. (1) 
by using “Gather” with a GPU 

 
(a) Passing region of light.    (b) Operation block. 

Fig. 4: Accumulating calculation in GPU 
implementation. 

4 RESULT 
We used a 3D object consisting of 978,416 points. We 

changed the number of object points  by randomly 
sampling the 3D object [11], and we evaluated the 
calculation times between the 3D object and WRP. Prior 
to the calculation, we sorted coordinate information of the 
3D object to increase the locality of the object points, 
leading to an improvement of the cache memory efficiency. 

First, we consider the results of each CPU 
implementation as shown in Table 1. Figure 5 shows the 
relationship between the number of object points and the 
calculation time. We confirmed that the implementation 
of C2 (the combination of the “Scatter” and the LUT 
method) achieved the shortest calculation time among 
the three implementations. Because the cache memory 
is well work for this small amount of the LUT, the 
implementation of C2, which has a small number of 
arithmetic operations compared to the implementations 
of C1 and C3, had the shortest calculation time among 
the three implementations. 

Next, we consider the results of the GPU 
implementation as shown in Table 1. Figure 6 shows the 
relationship between the number of object points and the 
calculation time. We confirmed that the implementations 
of G1 and G3 by the direct calculation method have 
shorter calculation times than that of G2 by the LUT 
method. This is a different result in comparison with the 
CPU implementation. The calculation speed of arithmetic 
operations in a GPU is generally faster than the access 
speed to the global memory on a GPU board. In the 
implementation of G2, the complex amplitude is read 
from the LUT memory stored in the global memory. 
Therefore, the implementation of G2 by the LUT method 
took longer calculation time than those of G1 and G3 by 
the direct calculation method of Eq. (1). 

Table2 shows the calculation times between the 3D 
objects and WRP in the number of object points 

. We confirmed that the LUT method has a lower 
speed-up ratio than the direct calculation method 
because most of the calculation times occupied by 
memory access. 

  
Fig. 5: Relationship between the number of object 

points and the calculation time with a CPU. 
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Fig. 6: Relationship between the number of object 

points and the calculation time with a GPU. 

Table 2: Calculation time between the 3D objects and 
WRP ( ). 

Symbol Calculation time [ms] 
C1 1,561 
C2 866 
C3 17,123 
G1 90 
G2 102 
G3 95 

5 CONCLUSIONS 
In this study, we confirmed that the CPU 

implementation by using the combination of the “Scatter” 
and the LUT method is better than other implementations, 
and the GPU implementation by using the direct 
calculation method is better than those by using the LUT 
method. In future works, by changing the distance from the 
3D objects to WRP, we will evaluate calculation times 
changing the distance from the 3D objects to WRP.  
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