

Deep Convolution Neural Networks for Painting-like 3D
Rendering

Zhi Yang1, Pei-Li Sun1, Tzung-Han Lin1
1National Taiwan University of Science and Technology, Taipei 10607, Taiwan

Keywords: Deep learning, non-photorealistic rendering, computer graphics.

ABSTRACT
A 3D rendering model which uses deep convolutional

neural networks to imitate 2D painting style is proposed.
User can feed the networks with simple paintings of
specific objects to render images of 3D objects with any
orientations in accordance with the painting style.

1 INTRODUCTION
Today, 3D rendering technology is widely used in 3D

animation, video games and artwork, etc. In the 3D
rendering pipeline, shading is the final step [1]. The
calculation of shading involves many information of the 3D
scene, such as lighting and viewing geometry, normal
vectors and optical property of object surface, and colors
to generate the RGB values on each pixel of the final 2D
rendering image. In addition to the rendering methods
which use the physical lighting model to render the
photorealistic images (physically based rendering, PBR),
there are many other methods [2][3] using different
process to achieve non-photorealistic rendering (NPR).
We can use professional software or write our own
programs to create the desired rendering style. However,
if a user doesn't have the knowledge of physical lighting
and rendering style, it is very difficult to create a rendering
method to generate the desired NPR images. This study
uses deep convolutional neural networks (DCNNs) to
solve this program.

In recent years, convolutional neural networks (CNN)
has been widely used for pattern recognition. Some
advanced CNNs can even generate per-pixel results, such
as object segmentation [4]. In terms of 3D information
processing, Nalbach et al. [5] used CNN to render
photorealistic images, and Taniai and Maehara [6] applied
CNN to estimate photometric stereo. In addition to the
superior multi-scale feature extraction and nonlinear fitting
of CNN, smart learning also is needed in the non-
photorealistic rendering. Using the DCNNs, we don’t need
to know the rules and the math of the desired rendering
style. All we need is to directly define the ideal results, that
means we can provide handmade training samples, and
DCNNs can learn how to render a 3D scene like a human
painter.

2 EXPERIMENT
In our proposed rendering pipeline (Fig. 1), we first

render pixel-wise 3D information (including mask,

depth and normal vectors) and illumination information
(include diffuse, specular and light directions) of the 3D
models to be painted, then the information will be
processed by the trained DCNNs to generate the
painting-like 2D outputs.

In the training phase of the DCNNs, the input data are
the 3D and illumination information of specific (sphere-
like) models. The use must paint 2D image of the specific
(sphere-like) models in different illumination directions.
These 2D paintings are the ground truths (i.e., output
targets) of the training data. The DCNNs will learn how
to imitate the 2D painting style based on the 3D and
illumination information of the specific models.

This section will introduce more details about how to
prepare the training data, to generate more training set,
DCNNs architecture, and the rendering methods.

Fig.1 The proposed rendering pipeline.

2.1 Prepare training data
The specific 3D models which user need to paint are

smooth sphere, polygonal sphere and mesh pattern
sphere (Fig. 2). We choose the smooth sphere because
it contains complete and continuous normal vectors. To
learn how to paint discontinuous surfaces, such as
edges, corners and cracks (Fig. 3) using the pipeline, we
use polygonal sphere and mesh pattern sphere.

The user must paint the appearance of seven different

AIS2 - 3

ISSN-L 1883-2490/26/0032 © 2019 ITE and SID IDW ’19 32

illumination directions of the smooth sphere with the same
painting style. The configuration of the 7 point light-
sources is shown in Fig. 4. We place the light sources
around the model from 0 to 180° polar angle, and the angle
between two neighboring light sources is 30°. For clarity,
we named each light source as L(θ, φ), θ is azimuthal angle
and φ is polar angle. The purpose of this setting is that we
can generate great amount of different illumination
directions by these seven light sources, more details will
be introduced in Section 2.2. Polygonal sphere and mesh
pattern sphere are only used to learn how to paint the
discontinuous surfaces, so we can simply choose the light
source L(0°, 30°).

Fig.2 3D models we use to create the training set:

 (a) Smooth sphere, (b) Polygonal sphere,
(c) Mesh pattern sphere.

Fig.3 Different types of surface: (a) Smooth surface,

(b) Edge or corner, (c) Crack.

Fig.4 Configuration of point light sources.

The 3D and illumination information, which is the input
of our training data, is generated by our rendering engine,
which was built by C++ and OpenGL. The 3D information
includes object masks, depth maps and normal vectors;
and the illumination information includes diffuse, specular
and light directions. The diffuse and specular are
generated by Phong shading. The information mentioned
above is usually used as the reference when we are
painting.

2.2 Pre-process the training data
To enhance performance of our DCNNs, we

generating more training sets by rotating the 2D painting
images. The painting images of smooth sphere in 5
different light sources including L(0°,30°), L(0°,60°), L(0°,90°),
L(0°,120°) and L(0°,150°) are rotated two degrees step by step.
This process will produce 902 ground truth images of
smooth sphere in different illumination directions. And for
both polygonal sphere and mesh pattern sphere, that will
produce 180 ground truth images.

The 3D and illumination information corresponding to
these newly generated ground truth images can be
easily produced by changing the position of the light
source and transforming the model in the OpenGL
program.

Finally, we got 1262 training sets; we can start the
DCNNs training.

2.3 Architecture of DCNNs
The proposed DCNNs is built with Tensorflow. We

use U-shape neural networks as the DCNNs architecture
(Fig. 5). The structure can produce pixel-wise outputs.
The whole structure has two paths (see Fig. 5): left one
is contracting path and right one is expansive path. The
size of each input image is 512x512 pixels. We stack
these images and feed this 512x512x10 (depth of normal
vectors and light directions are both in 3 channels and
the other are 1) input data into the contracting path. The
resolution of feature map will be decreased and the
depth will be increased through each step. One step
contains two convolutions and ReLU layers, we do
down-sampling on the output feature maps of each step
through pooling and then pass it to the next step. The
feature map is contracted to the size of 32x32x1024,
then enter the expansive path. Steps in the expansive
path will increase the resolution and decrease the depth.
The output of each step in this path will be up-sampling
through up-convolution and passed to the next step.
Before it enters the next step, it will concatenate with the
feature maps from the same step in the contracting path
first. In the last step of the expansive path, the network
finally generates the result, which is a 512x512
resolution RGB image, through two convolutions and
ReLU layers.

We set the size of each convolution filter to be 3x3,
and the size of each step is shown in Fig. 5. We use
PSNR (peak signal-to-noise ratio) as the loss function of
our network, and use Adam to optimize our model.

In addition to the pixel-wise output of this architecture,
it also has a benefit that the loss of high frequency details
caused by the down-sampling will be reduced. It is
because of the concatenation between the contracting
and the expansive paths.

33 IDW ’19

Fig. 5 Networks architecture

2.4 Generate 3D and illumination information
Our input information contains object mask, depth,

normal vectors, diffuse, specular and light direction, as
show in Fig. 6. We create some shaders to generate the
information, and there are some details about processing
the normal vectors, diffuse and specular reflections of a
surface.

2.5 Normal vectors
The normal vectors were stored in the 3D models, so

we do not have to generate it by ourselves. All we need to
do is to transform the coordinate system of normal vectors
from world space to camera space. It is easy to do by
multiply the normal vectors with the model matrix and view
matrix. However, normal vectors are only direction vectors
and do not represent a specific position in a space. If we
want to multiply the normal vectors with these matrices, we
should set the fourth component of a normal vector to zero,
and then we can multiply with the 4x4 matrix without
translation. Equ. 1 shows the coordinate transformation of
normal vectors.

 (1)

The subscripts “local” denote the local space and “cam”
denote the camera space. After this process, we can
simply get the normal vectors in the camera space by
normalizing the result.

2.6 Diffuse & specular
We use Phong reflection model (Equ. 2) to calculate

diffuse and specular light reflections of the 3D model. The
parameter setting is shown in Table 1. Where the , ,
and represent vectors of lighting, surface normal,
surface reflection and viewing respectively, and the
subscript m is an index number for different light source.
We generate diffuse reflection by setting the is in Equ. 2 as
zero, and generate specular reflection by setting both of ia

and id equals to zero.

(2)

Fig. 6 Input information of one training set:

(a) Phong shading, (b) object mask, (c) depth (z co-
ordinates), (d) normal vector, (e) diffuse, (f)

specular and (g) light direction.

Table 1 Parameter setting in Equ. 2

Symbol Describe Setting
ia Ambient light R= 0.2, G= 0.2, B= 0.2
id Diffuse light R= 0.8, G= 0.8, B= 0.8
is Specular light R= 1.0, G= 1.0, B= 1.0

Ka Ambient reflection
constant

R= 0.2, G= 0.2, B= 0.2

Kd Diffuse reflection
constant

R= 0.8, G= 0.8, B= 0.8

Ks Specular reflection
constant

R= 1.0, G= 1.0, B= 1.0

α Shininess 64

3 RESULTS
After training the proposed DCNNs, we can finally

render images by our rendering pipeline. We use two
datasets to train our DCNNs, one is painted with
watercolor, another is painted with computer painting
software. The paintings of each dataset are shown in
Fig.7. To demonstrate the rendering ability of our
pipeline, we chose six 3D models as our input, the
rendering result is shown in Fig. 8 and Fig. 9.

We could see that the DCNNs can rendering color
correctly with both painting style in various light
directions.

Our pipeline can also paint outline of each model, and
for Fig. 9, if you look carefully, you could find out that the
outlines have different width due to the light direction just
like the paintings in the dataset.

However, the DCNNs have limitation in learning some
painting details. For the watercolor dataset, DCNNs fail
to learn some properties of watercolor, like water stain
and uneven colors. For the software dataset, DCNNs
learn to paint the edge between two different colors, but
the edge is not as sharp as the original painting. For the
both datasets, the polygonal sphere and mesh pattern

IDW ’19 34

sphere are prepared to let DCNNs learn to draw inner
contours, but it fail to generate the feature.

Although the results of both painting styles are a little bit
blur and smoother than real paintings, in general, our
pipeline can paint the 3D object with correct color and
render the image with similar looking as the given painting
style.

Fig. 7 Ground truths of the training data: (a) Paint

with watercolor, (b) paint with painting software. The
corresponding light source of 1-7 are L(0, 180°)-L(0, 0),

and light source of 8 and 9 are L(0, 30°)

Fig. 8 Test results of the watercolor dataset.

4 CONCLUSIONS
To imitate a human painting style and to apply it in 3D

rendering, we propose a rendering pipeline, which
combines a rendering engine and DCNNs. The trained
DCNNs use the information which generated by our
rendering engine to render the final paintings with specific
painting style. To ensure we have enough dataset to train
our DCNNs, we provide a procedure which can use only
nine human paintings to generate a great number of
training data. After the training, this pipeline can render
images of 3D objects with any light orientations in
accordance with the painting style.

In the future, we consider adding more 3D and
illumination information to include more effects, like

shadow and particle effects. And we also consider to
combine two or more different rendering styles
altogether into our pipeline

Fig. 9 Test results of the painting software dataset.

REFERENCES

[1] R. J. Rost, B. Licea-Kane, D. Ginsburg, J.
Kessenich, B. Lichtenbelt, H. Malan, and M.
Weiblen, OpenGL Shading Language, 3rd ed,
Michigan: Addison Wesley, (2009).

[2] S. M. F. Treavett and M. Chen, “Pen-and-Ink
Rendering in Volume Visualization”, Proceedings
of Visualization 2000, VIS 2000, (2000).

[3] C. J. Curtis, S. E. Anderson, J. E. Seims, K. W.
Fleischer, and D. H. Salesin, “Computer-
Generated Watercolor”, SIGGRAPH '97, (1997).

[4] O. Ronneberger, P. Fischer, and T. Brox, “U-Net:
Convolutional Networks for Biomedical Image
Segmentation”, MICCAI 2015, (2015).

[5] O. Nalbach, E. Arabadzhiyska, D. Mehta, H.-P.
Seidel, and T. Ritschel, “Deep Shading:
Convolutional Neural Networks for Screen Space
Shading”, Computer Graphic Forum, vol. 36, no. 4,
pp. 65-78, (2017).

[6] T. Taniai and T. Maehara, “Neural Inverse
Rendering for General Reflectance Photometric
Stereo, ICML 2018, (2018).

35 IDW ’19

