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ABSTRACT 
A 3D rendering model which uses deep convolutional 

neural networks to imitate 2D painting style is proposed. 
User can feed the networks with simple paintings of 
specific objects to render images of 3D objects with any 
orientations in accordance with the painting style. 

1 INTRODUCTION 
Today, 3D rendering technology is widely used in 3D 

animation, video games and artwork, etc. In the 3D 
rendering pipeline, shading is the final step [1]. The 
calculation of shading involves many information of the 3D 
scene, such as lighting and viewing geometry, normal 
vectors and optical property of object surface, and colors 
to generate the RGB values on each pixel of the final 2D 
rendering image. In addition to the rendering methods 
which use the physical lighting model to render the 
photorealistic images (physically based rendering, PBR), 
there are many other methods [2][3] using different 
process to achieve non-photorealistic rendering (NPR). 
We can use professional software or write our own 
programs to create the desired rendering style. However, 
if a user doesn't have the knowledge of physical lighting 
and rendering style, it is very difficult to create a rendering 
method to generate the desired NPR images. This study 
uses deep convolutional neural networks (DCNNs) to 
solve this program.  

In recent years, convolutional neural networks (CNN) 
has been widely used for pattern recognition. Some 
advanced CNNs can even generate per-pixel results, such 
as object segmentation [4]. In terms of 3D information 
processing, Nalbach et al. [5] used CNN to render 
photorealistic images, and Taniai and Maehara [6] applied 
CNN to estimate photometric stereo. In addition to the 
superior multi-scale feature extraction and nonlinear fitting 
of CNN, smart learning also is needed in the non-
photorealistic rendering. Using the DCNNs, we don’t need 
to know the rules and the math of the desired rendering 
style. All we need is to directly define the ideal results, that 
means we can provide handmade training samples, and 
DCNNs can learn how to render a 3D scene like a human 
painter. 

2 EXPERIMENT 
In our proposed rendering pipeline (Fig. 1), we first 

render pixel-wise 3D information (including mask, 

depth and normal vectors) and illumination information 
(include diffuse, specular and light directions) of the 3D 
models to be painted, then the information will be 
processed by the trained DCNNs to generate the 
painting-like 2D outputs. 

In the training phase of the DCNNs, the input data are 
the 3D and illumination information of specific (sphere-
like) models. The use must paint 2D image of the specific 
(sphere-like) models in different illumination directions. 
These 2D paintings are the ground truths (i.e., output 
targets) of the training data. The DCNNs will learn how 
to imitate the 2D painting style based on the 3D and 
illumination information of the specific models. 

This section will introduce more details about how to 
prepare the training data, to generate more training set, 
DCNNs architecture, and the rendering methods. 

 
Fig.1 The proposed rendering pipeline. 

2.1 Prepare training data 
The specific 3D models which user need to paint are 

smooth sphere, polygonal sphere and mesh pattern 
sphere (Fig. 2). We choose the smooth sphere because 
it contains complete and continuous normal vectors. To 
learn how to paint discontinuous surfaces, such as 
edges, corners and cracks (Fig. 3) using the pipeline, we 
use polygonal sphere and mesh pattern sphere. 

The user must paint the appearance of seven different 
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illumination directions of the smooth sphere with the same 
painting style. The configuration of the 7 point light-
sources is shown in Fig. 4. We place the light sources 
around the model from 0 to 180° polar angle, and the angle 
between two neighboring light sources is 30°. For clarity, 
we named each light source as L( θ, φ), θ is azimuthal angle 
and φ is polar angle. The purpose of this setting is that we 
can generate great amount of different illumination 
directions by these seven light sources, more details will 
be introduced in Section 2.2. Polygonal sphere and mesh 
pattern sphere are only used to learn how to paint the 
discontinuous surfaces, so we can simply choose the light 
source L( 0°, 30°). 

 
Fig.2 3D models we use to create the training set: 

 (a) Smooth sphere, (b) Polygonal sphere,  
(c) Mesh pattern sphere. 

 
Fig.3 Different types of surface: (a) Smooth surface, 

(b) Edge or corner, (c) Crack. 

 
Fig.4 Configuration of point light sources. 

The 3D and illumination information, which is the input 
of our training data, is generated by our rendering engine, 
which was built by C++ and OpenGL. The 3D information 
includes object masks, depth maps and normal vectors; 
and the illumination information includes diffuse, specular 
and light directions. The diffuse and specular are 
generated by Phong shading. The information mentioned 
above is usually used as the reference when we are 
painting. 

 

 

2.2 Pre-process the training data 
To enhance performance of our DCNNs, we 

generating more training sets by rotating the 2D painting 
images. The painting images of smooth sphere in 5 
different light sources including L(0°,30°), L(0°,60°), L(0°,90°), 
L(0°,120°) and L(0°,150°) are rotated two degrees step by step. 
This process will produce 902 ground truth images of 
smooth sphere in different illumination directions. And for 
both polygonal sphere and mesh pattern sphere, that will 
produce 180 ground truth images. 

The 3D and illumination information corresponding to 
these newly generated ground truth images can be 
easily produced by changing the position of the light 
source and transforming the model in the OpenGL 
program. 

Finally, we got 1262 training sets; we can start the 
DCNNs training.  

2.3 Architecture of DCNNs 
The proposed DCNNs is built with Tensorflow. We 

use U-shape neural networks as the DCNNs architecture 
(Fig. 5). The structure can produce pixel-wise outputs. 
The whole structure has two paths (see Fig. 5): left one 
is contracting path and right one is expansive path. The 
size of each input image is 512x512 pixels. We stack 
these images and feed this 512x512x10 (depth of normal 
vectors and light directions are both in 3 channels and 
the other are 1) input data into the contracting path. The 
resolution of feature map will be decreased and the 
depth will be increased through each step. One step 
contains two convolutions and ReLU layers, we do 
down-sampling on the output feature maps of each step 
through pooling and then pass it to the next step. The 
feature map is contracted to the size of 32x32x1024, 
then enter the expansive path. Steps in the expansive 
path will increase the resolution and decrease the depth. 
The output of each step in this path will be up-sampling 
through up-convolution and passed to the next step. 
Before it enters the next step, it will concatenate with the 
feature maps from the same step in the contracting path 
first. In the last step of the expansive path, the network 
finally generates the result, which is a 512x512 
resolution RGB image, through two convolutions and 
ReLU layers. 

We set the size of each convolution filter to be 3x3, 
and the size of each step is shown in Fig. 5. We use 
PSNR (peak signal-to-noise ratio) as the loss function of 
our network, and use Adam to optimize our model. 

In addition to the pixel-wise output of this architecture, 
it also has a benefit that the loss of high frequency details 
caused by the down-sampling will be reduced. It is 
because of the concatenation between the contracting 
and the expansive paths.  
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Fig. 5 Networks architecture 

2.4 Generate 3D and illumination information 
Our input information contains object mask, depth, 

normal vectors, diffuse, specular and light direction, as 
show in Fig. 6. We create some shaders to generate the 
information, and there are some details about processing 
the normal vectors, diffuse and specular reflections of a 
surface. 

2.5 Normal vectors 
The normal vectors were stored in the 3D models, so 

we do not have to generate it by ourselves. All we need to 
do is to transform the coordinate system of normal vectors 
from world space to camera space. It is easy to do by 
multiply the normal vectors with the model matrix and view 
matrix. However, normal vectors are only direction vectors 
and do not represent a specific position in a space. If we 
want to multiply the normal vectors with these matrices, we 
should set the fourth component of a normal vector to zero, 
and then we can multiply with the 4x4 matrix without 
translation. Equ. 1 shows the coordinate transformation of 
normal vectors. 

   (1) 

The subscripts “local” denote the local space and “cam” 
denote the camera space. After this process, we can 
simply get the normal vectors in the camera space by 
normalizing the result. 

2.6 Diffuse & specular 
We use Phong reflection model (Equ. 2) to calculate 

diffuse and specular light reflections of the 3D model. The 
parameter setting is shown in Table 1. Where the , ,  
and  represent vectors of lighting, surface normal, 
surface reflection and viewing respectively, and the 
subscript m is an index number for different light source. 
We generate diffuse reflection by setting the is in Equ. 2 as 
zero, and generate specular reflection by setting both of ia 

and id equals to zero. 

 

(2) 

 
Fig. 6 Input information of one training set:  

(a) Phong shading, (b) object mask, (c) depth (z co-
ordinates), (d) normal vector, (e) diffuse, (f) 

specular and (g) light direction. 
 

Table 1 Parameter setting in Equ. 2  

Symbol Describe Setting 
ia Ambient light R= 0.2, G= 0.2, B= 0.2 
id Diffuse light R= 0.8, G= 0.8, B= 0.8 
is Specular light R= 1.0, G= 1.0, B= 1.0 

Ka Ambient reflection 
constant 

R= 0.2, G= 0.2, B= 0.2 

Kd Diffuse reflection 
constant 

R= 0.8, G= 0.8, B= 0.8 

Ks Specular reflection 
constant 

R= 1.0, G= 1.0, B= 1.0 

α Shininess 64 
 

3 RESULTS 
After training the proposed DCNNs, we can finally 

render images by our rendering pipeline. We use two 
datasets to train our DCNNs, one is painted with 
watercolor, another is painted with computer painting 
software. The paintings of each dataset are shown in 
Fig.7. To demonstrate the rendering ability of our 
pipeline, we chose six 3D models as our input, the 
rendering result is shown in Fig. 8 and Fig. 9. 

We could see that the DCNNs can rendering color 
correctly with both painting style in various light 
directions. 

Our pipeline can also paint outline of each model, and 
for Fig. 9, if you look carefully, you could find out that the 
outlines have different width due to the light direction just 
like the paintings in the dataset. 

However, the DCNNs have limitation in learning some 
painting details. For the watercolor dataset, DCNNs fail 
to learn some properties of watercolor, like water stain 
and uneven colors. For the software dataset, DCNNs 
learn to paint the edge between two different colors, but 
the edge is not as sharp as the original painting. For the 
both datasets, the polygonal sphere and mesh pattern 
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sphere are prepared to let DCNNs learn to draw inner 
contours, but it fail to generate the feature. 

Although the results of both painting styles are a little bit 
blur and smoother than real paintings, in general, our 
pipeline can paint the 3D object with correct color and 
render the image with similar looking as the given painting 
style. 

 
Fig. 7 Ground truths of the training data: (a) Paint 

with watercolor, (b) paint with painting software. The 
corresponding light source of 1-7 are L( 0, 180°)-L( 0, 0), 

and light source of 8 and 9 are L( 0, 30°) 

 
Fig. 8 Test results of the watercolor dataset. 

4 CONCLUSIONS 
To imitate a human painting style and to apply it in 3D 

rendering, we propose a rendering pipeline, which 
combines a rendering engine and DCNNs. The trained 
DCNNs use the information which generated by our 
rendering engine to render the final paintings with specific 
painting style. To ensure we have enough dataset to train 
our DCNNs, we provide a procedure which can use only 
nine human paintings to generate a great number of 
training data. After the training, this pipeline can render 
images of 3D objects with any light orientations in 
accordance with the painting style. 

In the future, we consider adding more 3D and 
illumination information to include more effects, like 

shadow and particle effects. And we also consider to 
combine two or more different rendering styles 
altogether into our pipeline 

 
Fig. 9 Test results of the painting software dataset. 
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