
Image Generation with a Unified Generative Adversarial Network
Training via Self-Labeling and Self-Attention

Tomoki Watanabe1 and Paolo Favaro2

tomoki8.watanabe@toshiba.co.jp
1Toshiba Corporation, Kawasaki, Japan
2University of Bern, Bern, Switzerland

Keywords: Image generation, Generative adversarial network, Deep learning, Self-supervised learning

ABSTRACT
Generative Adversarial Network(GAN) is an effective

method to obtain an image generation model. We propose

a novel GAN training scheme that can handle real images

with any level of labeling in a unified manner by introduc-

ing a form of artificial labeling. Our scheme consistently

improves the quality of generated images.

1 Introduction
Generative Adversarial Networks (GAN) [1] provide an

attractive approach to constructing generative models that
output samples of a target distribution. In their most basic
form, these models consist of two neural networks, a gen-
erator ⌧ and a discriminator ⇡. The first network is trained
to generate samples from some latent representation (typ-
ically a sample from a Gaussian distribution), while the
second network is trained to distinguish real samples GA
from the generated samples G

5
. The most effective GANs

seem to benefit greatly from class conditioning. The class
information is provided as input to the generator and either
injected into the discriminator as an input [2] or through
intermediate layers [3] or via a projection [4] or an auxil-
iary loss [5]. The family of these generators is generically
called conditional GANs (cGAN).

So far, we have described a GAN training method that
exploits the same benefits that conditional GANs enjoy,
but without using manually labeled data. When data is
partially or fully labeled, it is desirable to take advantage
of the available information. Our scheme can seamlessly
integrate such available labels and also indirectly transfer
their categorical information to the artificial labels. This is
possible because our artificial labels are defined relative
to the generator and the generator can adapt to a new
reference during training.

We evaluate our method on CIFAR-10 [6], STL-10 [7],
and SVHN [8] datasets using the BigGAN model [9] and
show that our method improves the quality of the generated
images in terms of the FID (Fréchet Inception Distance)
score [10]. Our method achieves better FID scores than
the state-of-the-art GAN and even that of fully supervised
cGAN methods.

Our contributions can be summarized as follows:

(1) A unified GAN training that can handle any level of
labeling in a unified manner by using: Self-labeling:

Classification loss

Conditional
adversarial loss

Unconditional
adversarial loss

Fig. 1 Architecture of proposed unified GAN training.

a method to automatically assign labels to real data
samples, and Self-attention: a method to select real
data samples with highly consistent synthetic labels.

(2) Consistent improvement in the FID scores across
several datasets (evaluation on CIFAR-10, STL-10,
and SVHN).

(3) The ability to outperform class-conditional GANs (fully
labeled dataset).

2 Method
Our unified GAN training uses a cGAN as backbone,

where the discriminator classifies the input into real/fake
and image categories. cGANs require semantic labels for
training. While the labels of generated data are implic-
itly defined, the labels of real data are either provided
through manual labeling or through our unsupervised
self-labeling and self-attention procedures [11]. We

show the network architecture of our method in Fig. 1.

2.1 Self-Labeling and Self-Attention
Our objective is to assign artificial labels to unlabeled

real images that are used in the conditional adversarial
loss. To this purpose, we train a classifier ⇠, which we
call teacher, on fake images G

5
= ⌧(I, 2), where the class-

correspondence is known. We train the teacher with the
cross-entropy loss

!
⇠

= �[2,⇠(�(G
5
))]. (1)

where � denotes the entropy, the fake image is obtained
via G

5
= ⌧(I, 2) with I ⇠ N(0, �

3
), 2 is a random variable

(with a discrete Uniform distribution) and also denotes its
instance, and � is an image augmentation function. Since
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the teacher may not be a perfect inverse of ⌧ with respect
to the conditional label 2, we introduce two methods to
ensure a high classification accuracy.

First, we use the EMA (Exponential Moving Average)
parameters of the teacher \̄

⇠
to compute the artificial la-

bels Ĥ2 of real images, i.e., we compute

Ĥ2 = arg max
8

⇠8(U(GA ); \̄⇠), (2)

where U is a weak image augmentation function, i.e., with
image transformations close to the identity. Second, be-
cause the artificial labels Ĥ2 are inaccurate especially dur-
ing the early epochs of the training, we introduce a se-
lection mechanism called self-attention. We first define
the reliability of the artificial labels via the softmax of the
classifier output

?2 =
exp(⇠

Ĥ2
(U(GA ); \̄⇠))P

 

8=1 exp(⇠8(U(GA ); \̄⇠))
, (3)

where  is the number of the artificial classes. As we show
in the experiments, the reliability yields a high value with
real images that are distinctively similar to generated fake
images, and when these fake images are well separated
into different clusters. Then, self-attention selects real
images GA such that ?2 � )⌘, where the threshold )⌘ 2
[0, 1].

2.2 Training with Artificial (and Real) Labels
The conditional adversarial loss for conventional cGANs

uses the supervised class labels H and artificial labels 2 for
real images and fake images respectively as

!
.

⇡
= � ⇢GA ,H [log %(real, H |GA )] � ⇢I,2[log %(fake, 2 |G

5
)].

(4)

With real images without supervised class labels H, we use
instead the artificial labels Ĥ2.

The discriminator has 2 heads, one for the unconditional
fake/real adversarial loss and another for the conditional
adversarial loss. The losses for the discriminator !⇡ and
the generator !

⌧
are simply the sum of the corresponding

conditional and unconditional losses

!⇡ = !
*

⇡
+ !

⇠

⇡
, !

⌧
= !

*

⌧
+ !

⇠

⌧
. (5)

The loss functions

!
*

⇡
= � ⇢GA [log %(real|GA )] � ⇢I [log %(fake|⌧(I))], (6)

!
*

⌧
= � ⇢I [log %(real|⌧(I))], (7)

!
⇠

⌧
= � ⇢I,2[log %(real, 2 |⌧(I, 2))], (8)

are defined following conventional cGANs. The loss func-
tion !

⇠

⇡
instead is defined so that it can be applied to a

dataset with any degree of labeling (from 0% to 100%) as

!
⇠

⇡
= � ⇢ {GA ,H |with label}[log %(real, H |GA )]

� ⇢ {GA , Ĥ2 |no label ^ ?2�)⌘}[log %(real, Ĥ2 |GA )]
� ⇢G 5 ,2[log %(fake, 2 |G

5
)]. (9)
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(a) Real images (b) Fake images

Fig. 2 Results on the unlabeled CIFAR-10.
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Fig. 3 Examples of the reliability of the artificial labels.

The loss function uses artificial labels Ĥ2 obtained from the
teacher as shown in eq. (2). As explained in subsection 2.1,
we calculate the loss only on images where the reliability
?2 is higher than a threshold )⌘, because unreliable labels
have an adverse effect on the training of the discriminator.
We update the teacher, the discriminator, and the generator
simultaneously via eqs. (1) and (5). We can train cGAN
on unlabeled dataset, because these loss terms are well-
defined even in the absence of real labels.

3 Results and Discussion
We evaluate our method on CIFAR-10, STL-10, and

SVHN by using FID scores as a quantitative measure and
also visualize samples for a qualitative assessment. The
FID scores are computed by using the official implementa-
tion [10].

3.1 Unlabeled CIFAR-10
We evaluate the effectiveness of self-labeling and self-

attention on CIFAR-10 and summarize the results in Ta-
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Table 1 Ablation study on the unlabeled CIFAR-10.

SELF-LABELING SELF-ATTENTION FID

(A) - - 6.96

(B) X - 7.00

(C) X X 6.81

Table 2 Comparison on the unlabeled CIFAR-10.

METHOD FID

BIGGAN [9] 14.73

TOP-K GAN [12] 13.34

ICR-GAN [13] 9.21

SLCGAN [14] 8.95

TOP-K ICR-GAN [12] 8.57

OURS 6.81

ble 1. The results show that (B) unreliable artificial labels
hurt the performance and (C) refined artificial labels help
the training of the GAN compared to using (A) no artificial
labels. Our method improves the FID score from 6.96 to
6.81.

In Fig. 2(a), we show real images grouped by their artifi-
cial labels, which were learned without supervision. The
images are selected via self-attention. By starting from the
top, every pair of rows corresponds to one artificial label.
We can see that every artificial label identifies images with
similar objects, but also that objects across separate labels
differ substantially. For example, the groups 0, 2 and 9
contain an object on the ground, in the sea, and in the sky
respectively, and the groups 2 and 7 contain ships and
cars respectively. In Fig. 2(b), we also show in the same
manner images generated using the artificial labels (as
input to the generator). Notice the broad diversity and the
strong similarity between fake and real images in terms of
artificial categories.

To explain the role of the proposed reliability measure
?2 (see eq. (3)) for self-attention, we sort real images with
the same dominant artificial label based on the magnitude
of the reliability. We show in Fig. 3 an evaluation of the
consistency between real and artificial labels for two ran-
domly chosen artificial labels. Through visual inspection
we find that these labels correspond mostly to the Horse

(Fig. 3(a)) and Frog (Fig. 3(b)) categories. The top and
bottom rows correspond to images of high and low relia-
bility respectively. One can observe the higher semantic
class consistency (i.e., more Horse images in Fig. 3(a) and
more Frog images in Fig. 3(b)), when the reliability is high.

Finally, we compare our method with the state-of-the-
art methods for unsupervised GAN training on CIFAR-10
in Table 2. The methods use different loss functions, but
share the same BigGAN generator. Although our generator
uses the conditional label input, the basic backbone is
the same. Our proposed training shows a significant FID
improvement over the previous state-of-the-art (from 8.57

Table 3 Ablation study on the labeled CIFAR-10.

LABELS FID

(A) ARTIFICIAL 6.81

(B) REAL 4.57

(C) ARTIFICIAL & REAL 4.35

Table 4 Comparison on the labeled CIFAR-10.

METHOD FID

BIGGAN [9] 9.06

DIFFAUG GAN [15] 8.56

MHINGE GAN [16] 6.40

FQ-GAN [17] 5.39

OURS 4.35

to 6.81).

3.2 Labeled CIFAR-10
As shown in Table 3, our method also improves the

FID score when training on labeled datasets. The first
column shows the type of labels used in the conditional
adversarial loss. We calculate the conditional adversarial
loss with either (A) the artificial labels, (B) the real labels,
or (C) both of them. The result using both labels yields the
best FID. Our method improves the baseline cGAN on the
FID from 4.57 to 4.35. The results show that the artificial
labels integrate naturally with the real labels and further
boost the performance of the generator.

In Table 4, we compare our method with the state-of-the-
art cGAN methods on CIFAR-10. As in the unsupervised
case, our proposed training shows a significant FID im-
provement over the previous state-of-the-art (from 5.39 to
4.35).

3.3 STL-10 and SVHN
In Table 5, we compare our method to a baseline without

self-labeling and self-attention on STL-10 and SVHN. As
we can see from the range of the FID scores, the STL-10
dataset is more complex and the SVHN dataset is simpler
than the CIFAR-10 dataset. Another difference is that we
use an image size of 48 ⇥ 48 pixels for the experiments on
STL-10, while in the CIFAR-10 and SVHN datasets it is of
32 ⇥ 32 pixels. The results show that our method improves
the FID score on both datasets compared to the baseline
(from 32.85 to 30.91 and from 2.44 to 2.19). In Fig. 5, we
show samples of real and generated images on STL-10.

4 Conclusions
We proposed a novel GAN training scheme that can

handle different levels of labeling in a unified manner. Our
approach is based on using the generator to implicitly
define artificial labels and then to train a classifier on purely
synthetic data and labels. This classifier can then be used
to self-label real data. Its class-consistency is found to
correlate well with its classification probability score, which
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(a) Real images (b) Fake images

Fig. 4 Results on the labeled CIFAR-10.

Table 5 FID on the unlabeled STL-10 and SVHN..

DATASET BASELINE +OURS

STL-10 32.85 30.91
SVHN 2.44 2.19

we then use to select samples with a reliable label (self-
attention). We evaluated our approach on CIFAR-10, STL-
10 and SVHN, and showed that both self-labeling and
self-attention consistently improve the quality of generated
data.
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Fig. 5 Results on the unlabeled STL-10.
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