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ABSTRACT 

Organic thin-film transistors with channel lengths and 
gate-to-contact overlaps as small as 100 nm have been 
fabricated on polymeric substrates using electron-beam 
lithography. The transistors have on/off current ratios up to 
1010, subthreshold swings as small as 70 mV/decade, and 
signal delays as small as 14 ns at a supply voltage of 3 V. 
 
1 Introduction 

Thin-film transistors (TFTs) based on conjugated 
organic semiconductors can typically be fabricated at 
relatively low process temperatures, usually around or 
below 100 °C, and thus not only on glass, but also on 
polymeric substrates. This makes organic TFTs potentially 
useful for flexible electronics applications, such as rollable 
active-matrix displays and bendable integrated circuits. 

The dynamic TFT performance is determined mainly by 
their critical dimensions, i.e., by the channel length and the 
parasitic gate-to-source and gate-to-drain overlaps. How 
small these can be made depends to a large extent on the 
patterning process. The resolution limit of most of the 
lithography techniques typically utilized for organic-TFT 
fabrication, including laser lithography [1,2], 
photolithography [3,4] and stencil lithography [5,6], is 
approximately 1 μm. Organic TFTs fabricated using these 
techniques have voltage-normalized transit frequencies up 
to 7 MHz/V (21 MHz at a gate-source voltage of 3 V [5]). 
For comparison, vertical organic permeable-base 
transistors in which the distance traveled by the charge 
carriers from the emitter to the collector is defined by a 
deposited-layer thickness and only the parasitic overlaps 
are defined by lithography, have demonstrated 
voltage-normalized frequencies up to 25 MHz/V [7]. 

Electron-beam lithography is a high-resolution 
patterning technique that makes it possible to fabricate 
organic TFTs with lateral dimensions as small as about 
100 nm on polymeric substrates [8]. Here, we report on the 
static and dynamic characteristics of p-channel and 
n-channel organic TFTs with channel lengths and 
gate-to-contact overlaps as small as 100 nm fabricated by 
electron-beam lithography on flexible polyethylene 
naphthalate (PEN) substrates. The TFTs have on/off 
current ratios as large as 1010 and subthreshold swings as 
small as 70 mV/decade. Unipolar inverters display 
characteristic switching-delay time constants as small as 
14 ns at a supply voltage of 3 V, corresponding to a 
voltage-normalized frequency of 12 MHz/V. 

 2 Experiment 
The TFTs were fabricated in the inverted coplanar 

(bottom-gate, bottom-contact) device architecture on 
125-μm-thick flexible polyethylene naphthalate (Teonex 
Q65 PEN) substrates. Figure 1 shows a schematic cross 
section of the TFTs. 

The aluminum gate electrodes and gold source/drain 
contacts were deposited by thermal evaporation in 
vacuum and patterned by electron-beam lithography and 
lift-off, using a two-layer poly(methyl methacrylate) 
(PMMA) resist and a Raith eLINE electron-beam 
lithography system with an electron-beam voltage of 
20 kV and an exposure dose of 370 μC/cm2. 

The surface of the aluminum gate electrodes was 
briefly exposed to oxygen plasma to produce an 
aluminum oxide (AlOx) gate dielectric with a thickness of 
about 6 nm [9]. To promote a favorable morphology of 
the organic semiconductor in the channel region of the 
TFTs and on the surface of the gold source/drain 
contacts, the substrate was immersed first into an alkyl- 
or fluoroalkylphosphonic acid solution, allowing the 
formation of a hydrophobic self-assembled monolayer 
(SAM) with a thickness of about 2 nm on the surface of 
the aluminum oxide gate dielectric [10], followed by 
immersion into a solution of a thiol or mercaptan to 
functionalize the surface of the gold source and drain 
contacts with a chemisorbed monolayer, with the intent 
of minimizing the contact resistance of the TFTs [5,11]. 

In the last process step, the semiconductor was 
deposited by thermal sublimation in vacuum through a 
manually aligned stencil mask [6]. The semiconductors 
diphenyl-dinaphtho-[2,3-b:2’,3’-f]thieno[3,2-b]thiophene 
(DPh-DNTT) [12] and ActivInk N1100 [13] were chosen 
for the p-channel and the n-channel TFTs, respectively. 

Fig. 1. Schematic TFT cross section and structures of
the organic semiconductors (DPh-DNTT, N1100) 
and of the molecules for the functionalization of
the source and drain contacts. 
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3 Results 
Using electron-beam lithography, we have fabricated 

organic TFTs with channel lengths and gate-to-contact 
overlaps as small as 100 nm on polymeric substrates. The 
air-stable small-molecule organic semiconductors 
DPh-DNTT [12] and ActivInk N1100 [13] were selected for 
the p-channel and n-channel TFTs, respectively. The 
capabilities of direct-write electron-beam lithography for 
the fabrication of dense arrays of nanoscale organic TFTs 
with excellent accuracy on flexible substrates is illustrated 
in Figure 2. 

The measured current-voltage characteristics of 
p-channel DPh-DNTT TFTs with channel lengths 
ranging from 200 to 900 nm, gate-to-contact overlaps of 
100 or 200 nm, and a channel width of 50 or 80 μm are 
shown in Figure 3. The transfer characteristics indicate 
on/off current ratios between 1×108 and 4×109, 
subthreshold swings between 80 and 150 mV/decade, 
turn-on voltages between 0.0 and 0.4 V, and effective 
charge-carrier mobilities between 0.1 and 0.4 cm2/Vs. 
For a channel length of 900 nm, gate-to-contact overlaps 
of 100 nm, and a channel width of 80 μm, the on/off 
current ratio reaches 1010 (Figure 4). This is the largest 
on/off current ratio reported to date for flexible organic 
TFTs. 

For mobile or wearable electronics systems, 
low-voltage device and circuit operation is of critical 
importance. Figure 5 summarizes the transfer and 
output characteristics of a p-channel DPh-DNTT TFT 
with a channel length of 600 nm, gate-to-contact 
overlaps of 400 nm, and a channel width of 80 μm 
measured with a maximum gate-source voltage of -1 V. 
The transfer characteristics indicate a turn-on voltage of 
0.0 V, a subthreshold swing of 70 mV/decade, and an 
on/off current ratio of 3×108; this is the largest on/off 
current ratio reported to date for organic TFTs over a 
gate-source voltage range from 0 to ±1 V or less [14]. 

Fig. 2. Photographs and scanning electron microscopy
(SEM) images of TFTs fabricated by electron-beam 
lithography on a flexible PEN substrate. 

Fig. 3. Top: Transfer and output characteristics of a
p-channel DPh-DNTT TFT with a channel length of
200 nm and gate-to-contact overlaps of 200 nm. 
Bottom: Transfer characteristics of DPh-DNTT
TFTs with channel lengths of 300, 500, 700, and
900 nm and gate-to-contact overlaps of 100 nm,
and output characteristics of the DPh-DNTT TFT 
with a channel length of 300 nm. 

Fig. 4. Transfer characteristics of a p-channel
DPh-DNTT TFT with a channel length of 900 nm
and gate-to-contact overlaps of 100 nm, showing
an on/off current ratio of 1010, the largest on/off
ratio reported to date for flexible organic TFTs. 

Fig. 5. Low-voltage operation of a p-channel DPh-DNTT
TFT having a channel length of 600 nm and
gate-to-contact overlaps of 400 nm. 
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To evaluate the dynamic performance of the nanoscale 
p-channel TFTs, we fabricated unipolar inverters designed 
in a zero-VGS circuit topology [15]. These inverters are 
based on two p-channel DPh-DNTT TFTs which both 
have a channel length of 120 nm and gate-to-contact 
overlaps of 90 nm. Figure 6 shows the circuit schematic 
and the measured dynamic characteristics of such an 
inverter. From the inverter’s dynamic characteristics, 
which were measured by applying a square-wave voltage 
with an amplitude of 3 V to the input of the inverter while 
recording the output response using a high-impedance 
probe and an oscilloscope, a characteristic 
switching-delay time constant ( ) of 14 ns is extracted for a 
supply voltage of 3 V. This corresponds to an equivalent 
frequency [feq = 1/(2· )] of 36 MHz. 

In addition to p-channel TFTs (based on DPh-DNTT as 
the semiconductor), we also fabricated n-channel organic 
TFTs, using Polyera ActivInk N1100 as the semiconductor 
[13]. The measured current-voltage characteristics of 
n-channel N1100 TFTs with channel lengths ranging from 
200 to 800 nm and gate-to-contact overlaps of 150 nm 
fabricated on a glass substrate are summarized in 
Figure 7. The transfer characteristics indicate on/off 
current ratios up to 108, subthreshold swings as small as 
80 mV/decade, and turn-on voltages between 0.1 
and -0.5 V. This is the best static performance reported to 
date for nanoscale n-channel organic TFTs. 
 
4 Discussion 

The nanoscale TFTs and inverters reported here were 
fabricated using electron-beam lithography. While the 
main drawback of electron-beam lithography is its low 
throughput, this does not preclude the potential of using 
electron-beam lithography to fabricate organic TFTs and 
circuits on a larger scale. Just like the throughput of other 
maskless patterning techniques, such as laser lithography 
[1,2] and inkjet printing [16], can be greatly enhanced by 
the implementation of multiple beams or multiple nozzles 
[17], the efficiency of electron-beam lithography can be 
massively increased as well by implementing arrays of 

individually addressable electron beams [18,19]. These 
considerations notwithstanding the primary purpose of 
the work reported here was not to suggest 
electron-beam lithography as a method for the mass 
production of organic TFTs, but rather to confirm that 
organic TFTs with channel lengths and gate-to-contact 
overlaps in the range of a few hundred nanometers 
fabricated on flexible plastic substrates can provide 
useful static performance, including near-zero turn-on 
voltages as well as off-state drain currents, on/off current 
ratios, and subthreshold swings comparable to the best 
values reported for long-channel organic TFTs. 

 
5 Conclusions 

In summary, we have used direct-write electron-beam 
lithography to fabricate p-channel and n-channel organic 
TFTs with channel lengths as small as 120 nm and 
gate-to-contact overlaps as small as 90 nm on flexible 
polymeric substrates. The TFTs have on/off current 
ratios as large as 1010 and subthreshold swings as small 
as 70 mV/decade. Unipolar inverters display a 
characteristic switching-delay time constant of 14 ns at a 
supply voltage of 3 V, corresponding to a supply 
voltage-normalized equivalent frequency of about 
12 MHz/V. Better dynamic performance can be 
expected by reductions of the contact resistance; for 
example, for a contact resistance of 10 cm (the 
smallest contact resistance reported for organic TFTs 
[5]), a transit frequency above 100 MHz at 3 V can be 
expected. 
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Fig. 6. Circuit schematic and dynamic characteristics of a
unipolar zero-VGS inverter based on two p-channel
DPh-DNTT TFTs with channel lengths of 120 nm
and gate-to-contact overlaps of 90 nm. The output 
signal indicates a signal-delay time constant of 
14 ns at a supply voltage of 3 V. 

Fig. 7. Measured transfer characteristics of n-channel
N1100 TFTs with channel lengths of 200, 400, 600
and 800 nm, gate-to-contact overlaps of 100 nm,
and a channel width of 50 μm, and output
characteristics of the TFT with a channel length of
200 nm. 
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