CTD取り付け型微細構造観測手法の開発と北太平洋海盆規模乱流分布 Development of CTD-attached microstructure measurements and basin-scale turbulence distribution in the North Pacific *安田 一郎¹、後藤 恭敬²、長澤 真樹¹、李 根淙¹、中野 俊也²、纐纈 慎也³ *Ichiro Yasuda¹, Yasutaka Goto², Maki Nagasawa¹, Koenjong Lee¹, Toshiya Nakano², Shinya Kouketsu³ - 1. 東京大学大気海洋研究所、2. 気象庁、3. 海洋研究開発機構 - 1. Atmosphere and Ocean Research Institute, The University of Tokyo, 2. Japan Meterolorogical Agency, 3. Japan Agency of Marine-Earth Science and Technology A new efficient microstructure measurement with fast-response thermistors attached to CTD as common ship-based observational platforms were elaborated. This revealed cross-Pacific top-bottom turbulence distributions. Vertical distribution of turbulent energy dissipation is found to be proportional with local squared buoyancy frequency N^2 (representing density vertical gradient) and local internal tide energy generation and dissipation, indicating that main part of energy dissipation of tide-induced turbulence occurs in the main thermocline. These contribute to revising models of tide-induced three-dimensional distribution used in ocean/climate models, which will contribute to reproducing ocean meridional overturning circulation and oceanic heat/material circulation. キーワード: 乱流、微細構造観測手法、海洋子午面循環、潮汐混合、北太平洋 Keywords: Turbulence, microstructure observation method, Meridional Overturning Circulation, Tide-induced mixing, North Pacific