Discovery of two hexagonal phases in (Fe,Al)OOH under the P-T conditions of the deep lower mantle

*Lu Liu^{1,2}, Li Zhang¹, Hongsheng Yuan¹

1. Center for High Pressure Science and Technology Advanced Research, 2. University of Science and Technology of China

Deep water can cause a series of complex seismological phenomena by changing the density and thermal stability of lower mantle components. δ -H solid solution phase (AlOOH-MgSiO₂(OH)) is stable at lower mantle conditions¹, because the crystallographic frameworks of the phase H is similar to that of the δ -AlOOH phase, with very strong hydrogen bonds^{2,3}. δ -AlOOH and ε -FeOOH can also form solid solution⁴ (δ - ε solution). It is reasonable to infer that δ - ε solid solution may have similar thermal stability as that of H- δ solution, considering their similar crystal structure⁵. In our experiments, we synthesized the δ - ε solution at 79GPa and 1600K in a laser-heated diamond anvil cell. As the temperature increases to 2100k, the orthorhombic δ - ε solution transformed into a hexagonal-structured phase. By combining powder X-ray diffraction techniques with multigrain indexation⁶, we determined its hexagonal lattice with a=b=10.019Å and c=2.614Å. At 79GPa and 2400K, the hexagonal phase transforms into another hexagonal phase, with the lattice parameters of a=b=2.733Å and c=9.343Å. The discovery of these two new phases may provide new insights into the deep-water storage.

References

- 1.Ohira I, Ohtani E, Sakai T, et al. Stability of a hydrous δ -phase, AlOOH-MgSiO₂(OH)₂, and a mechanism for water transport into the base of lower mantle[J]. Earth and Planetary Science Letters, 2014, 401: 12-17.
- 2.Ohtani, E., Amaike, Y., Kamada, S., Sakamaki, T. and Hirao, N. Stability of hydrous phase H MgSiO₄H₂ under lower mantle conditions. Geophys. Res. Lett. 41, -8287 (2014).
- 3.Nishi M,Kuwayama Y,Tsuchiya J,et al.The pyrite-type high-pressure form of FeOOH[J]. Nature,2017,54(7662):205-208.
- 4.T Kawazoe,I Ohira,T Ishii et al. Single crystal synthesis of δ -(Al,Fe)OOH American Mineralogist. Volume 102, pages 1953–1956, (2017)
- 5.Gleason A E,Quiroga C E,Suzuki A,et al.Symmetrization driven spin transition in ε -FeOOH at high pressure[J]. Earth and Planetary Science Letters, 2013, 379: 49-55.
- 6.Zhang L,Yuan H,Meng Y,et al.Discovery of a hexagonal ultradense hydrous phase in (Fe, Al) OOH[J]. Proceedings of the National Academy of Sciences, 2018, 115(12):2908-2911.

Keywords: High temperature and high pressure experiment, hydrous phase, diamond anvil cell