Shock-compressed behavior of quartz by XFEL

*Tomoko Sato¹, Yoshinori Tange², Yusuke Seto³, Toshimori Sekine^{4,5}, Norimasa Ozaki⁴, Toyohito Nishikawa⁴, Kohei Miyanishi⁴, Kensuke Matsuoka⁴, Ryosuke Kodama⁴, Tadashi Togashi², Yuichi Inubushi², Toshinori Yabuuchi⁶, Makina Yabashi⁶

1. Hiroshima University, 2. Japan Synchrotron Radiation Research Institute, 3. Kobe University, 4. Osaka University, 5. Center for High Pressure Science & Technology Advanced Research, 6. RIKEN

We have conducted x-ray diffraction measurement (XRD) with femtosecond x-ray pulses generated by the x-ray free electron laser (XFEL) to observe lattice dynamics and phase transformation of single-crystal quartz under high strain-rate shock compression (~10⁹ s⁻¹) and high pressure. Single-crystal quartz samples were shock-compressed by high-power short- and long-pulse lasers. In the short-pulse experiments, the lattice was reduced to 15% and 1.5% in the direction parallel and perpendicular to the compression axis, respectively. The sample was uniaxially compressed over its known Hugoniot elastic limit. In the long-pulse experiments, three different states were observed. Polycrystalline stishovite appeared at first, and elastically compressed state and a topotaxially transformed new phase were observed successively.

Keywords: Shock compression, in-situ X-ray diffraction, quartz