Experimental confirmation of a spineloid transitional olivine polymorph using ultrafine－grained aggregates of $\mathrm{Mg}_{2} \mathrm{GeO}_{4}$

＊Thomas P．Ferrand ${ }^{1}$ ，Takehiko Hiraga ${ }^{1}$

1．Earthquake Research Institute

Ultrafine－grained aggreagtes of $\mathrm{Mg}_{2} \mathrm{GeO}_{4}$ were synthetized using spark plasma sintering and deformed using an 1 －atm deformation rig between $950^{\circ} \mathrm{C}$ and $1200^{\circ} \mathrm{C}$ ．Observations with SEM，EBSD，XRD and Raman together confirm that the samples consist of α－olivine with minor enstatite，with a grain size of 1－10 microns．Deformation data indicate an extreme softening of the material around 100 MPa in samples deformed at temperatures of $1000^{\circ} \mathrm{C}$ or above．This softening is followed by a sharp hardening， suggesting that the fast deformation process ended．
The olivine－spinel transition in $\mathrm{Mg}_{2} \mathrm{GeO}_{4}$ occurs around $810^{\circ} \mathrm{C}$ ，and all experiments were done in the stability field of olivine．The deformation curves，supported by Raman and XRD data，suggest that ω－olivine，expected by Poirier in 1981 ，and observed in $\mathrm{Mg}_{2} \mathrm{GeO}_{4}$ within a meteorite in 2017，transiently forms during the deformation．ω－olivine is a spineloid metastable olivine，which does not have any stability field in a P－T diagram，but it might have one in a P－T－σ diagram．It was reproduced in the stability fields of β－olivine（Guyot et al．，1991）of γ－olivine（Reynard et al．，1994）．Here I show that it can also form in the stability of α－olivine．
It seems that the transition occurs only between $1000^{\circ} \mathrm{C}$ and $1150^{\circ} \mathrm{C}$ when the stress approaches 100 MPa，as a result of a competition between diffusional and displacive processes．
The existence of ω－olivine in stressed mantle regardless of stability fields could have major consequences on how we understand the solid－state olivine－spinel transition and related earthquakes triggering．Below $1200^{\circ} \mathrm{C}$ ，if ω－olivine does not form then α－olivine is metastable．

Keywords：olivine－spinel transition，ω－olivine，mantle，laboratory，metastable，martensitic

