Experimental confirmation of a spineloid transitional olivine polymorph using ultrafine-grained aggregates of Mg₂GeO₄

*Thomas P. Ferrand¹, Takehiko Hiraga¹

1. Earthquake Research Institute

Ultrafine-grained aggreagtes of Mg_2GeO_4 were synthetized using spark plasma sintering and deformed using an 1-atm deformation rig between 950°C and 1200°C. Observations with SEM, EBSD, XRD and Raman together confirm that the samples consist of α -olivine with minor enstatite, with a grain size of 1-10 microns. Deformation data indicate an extreme softening of the material around 100 MPa in samples deformed at temperatures of 1000°C or above. This softening is followed by a sharp hardening, suggesting that the fast deformation process ended.

The olivine-spinel transition in Mg_2GeO_4 occurs around $810^{\circ}C$, and all experiments were done in the stability field of olivine. The deformation curves, supported by Raman and XRD data, suggest that ω -olivine, expected by Poirier in 1981, and observed in Mg_2GeO_4 within a meteorite in 2017, transiently forms during the deformation. ω -olivine is a spineloid metastable olivine, which does not have any stability field in a P-T diagram, but it might have one in a P-T- σ diagram. It was reproduced in the stability fields of β -olivine (Guyot et al., 1991) of γ -olivine (Reynard et al., 1994). Here I show that it can also form in the stability of α -olivine.

It seems that the transition occurs only between 1000°C and 1150°C when the stress approaches 100 MPa, as a result of a competition between diffusional and displacive processes.

The existence of ω -olivine in stressed mantle regardless of stability fields could have major consequences on how we understand the solid-state olivine-spinel transition and related earthquakes triggering. Below 1200°C, if ω -olivine does not form then α -olivine is metastable.

Keywords: olivine-spinel transition, ω -olivine, mantle, laboratory, metastable, martensitic