Radial anisotropy in the upper mantle using multi-mode surface waves incorporating the η_{κ} parameter: Application to the Pacific and Australian regions

奥山 秀弥¹、*吉澤 和範^{1,2}、川勝 均³、一瀬 建日³ Shuya Okuyama¹, *Kazunori Yoshizawa^{1,2}, Hitoshi Kawakatsu³, Takehi Isse³

1. 北海道大学大学院理学院、2. 北海道大学大学院理学研究院、3. 東京大学地震研究所

1. Graduate School of Science, Hokkaido University, 2. Faculty of Science, Hokkaido University, 3. Earthquake Research Institute, University of Tokyo

Radial anisotropy can be described by five elastic parameters; four parameters related to seismic wave speeds ($\beta_{v'}$, $\beta_{h'}$, α_{h} , α_{v}) and an additional fifth anisotropic parameter (η). One of the anisotropic parameters, η , was originally defined by Anderson (1961), but its physical proprieties have been rather unclear compared with other four parameters related to elastic velocity.

The re-defined fifth anisotropic parameter η_{κ} by Kawakatsu et al. (2015) makes it easier to understand its physical proprieties compared with conventional η . The introduction of η_{κ} affects the shape of sensitivity kernels of Rayleigh wave phase speeds with respect to η_{κ} , PH-wave speeds α_{h} and PV-wave speeds α_{v} (Kawakatsu, 2016b). Since the sensitivity of Rayleigh wave phase speeds to η_{κ} becomes greater than that to η_{μ} we can expect a possibility of resolving the η_{κ} parameter. However, since the inverse correlation between the sensitivity kernels of SV-wave speed β_{v} and η_{κ} becomes rather stronger, the trade-off between β_{v} and may easily occur. Therefore, the independent determination of η_{κ} parameter from the inversions of surface-wave dispersion curves is not a straightforward issue.

In this study, incorporating η_{κ} , we performed inversions for five elastic parameters in the upper mantle, employing a classical iterativenonlinear least-squares inversion method (Tarantola and Valette, 1982). We used multi-mode dispersion data sets of surface waves in the Australian region (Yoshizawa, 2014, PEPI) and Pacific (Isse et al., 2019, EPSL) to reconstruct 3-D radially anisotropic model. In these inversions, we used isotropic PREM as a starting model to avoid the influence of reference anisotropy model.

The retrieved spatial distribution of the η_{κ} parameter can be mostly explained by trade-offs with SV wave speed β_{v} at many locations in Australia and Pacific. Still, we can find structural features in our 3-D β_{v} and η_{κ} models, particularly in some major structural boundaries such as ridges and the Tasman Line in eastern Australia, which cannot simply be attributed to the trade-off between β_{v} and η_{κ} indicating possible intrinsic character of η_{κ} in the upper mantle.

キーワード:鉛直異方性、表面波、インバージョン Keywords: radial anisotropy, surface waves, inversion