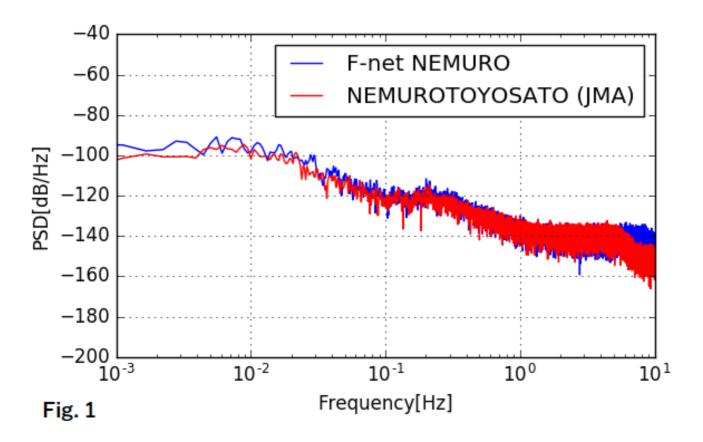
津波地震の規模推定への利用を想定した気象庁広帯域地震計・速度型強震 計の長周期帯域のノイズレベルの比較

Comparison of noise levels of the JMA and F-net broadband seismographs / strong motion velocity-type seismographs in long-period range for the purpose of magnitude estimation of tsunami earthquakes

- *田中 昌之1、勝間田 明男1
- *Masayuki Tanaka¹, Akio Katsumata¹
- 1. 気象研究所
- 1. Meteorological Research Institute


津波地震(スロー地震)は,同じ規模(地震モーメント)の通常の地震に比較して地震波の短周期成分の励 起が低い現象である(Kanamori, 1972). その結果, 気象庁マグニチュードMiや表面波マグニチュードMiなどの 周期数秒~20秒の地震波の振幅から直接決められるマグニチュードがモーメントマグニチュード $(M_{_{\!\scriptscriptstyle{M}}})$ よりも小 さくなる. 1992年ニカラグア地震(M₂7.2, M₄₀7.6)は, M₄₀が8未満であるのに破壊継続時間が100秒を超えてお り,津波地震と考えられている(例えば, Satake et al., 1993). このような地震は,発生メカニズム解析や地震の 規模推定等において長周期の地震波に注目する必要があり、広帯域地震計による観測データはとても期待され ている. 国立研究開発法人防災科学技術研究所が運用する広帯域地震観測網(F-net)では, 日本各地に広帯域 地震計と速度型強震計を併設し、広帯域かつ広ダイナミックレンジの観測を可能としている. 広帯域地震計は 温度変化の影響を受けやすく、速度型強震計と一緒に奥行きのある横坑の最奥部に設置されている。先行研究 では、国内で発生する津波地震に対して、F-netの速度型強震計を規模推定に活用できそうであることが分 かった(例えば,田中・勝間田, 日本地震学会2017年度秋季大会, 田中・勝間田, JpGU Meeting 2018, 田 中・勝間田,日本地震学会2018年度秋季大会).気象庁も全国に併設ではないが広帯域地震計と速度型強震計 を設置している.しかしながら,一部を除き,横坑内の設置ではないなど観測環境はF-netほど整っていな い. そこで, 気象庁とF-netの速度型強震計等の観測された連続波形記録からバックグランドのノイズレベルを 調べる.McNamara and Buland (2004)等を参考に,時間窓を1日とし,半日ずつシフトさせながらそれぞれ の期間におけるパワースペクトル密度を計算する、その結果から気象庁の広帯域地震計や速度型強震計が津波 地震に使えるかを検討する. 図1に一例として, 気象庁の根室豊里観測点と近隣のF-netの根室観測点におけ る、2019年1月1日00時00分から1時間の上下動成分の速度型強震計記録を使って解析したパワースペクトル 密度を示す. ほぼ同じノイズレベルであり、設置環境の違いによる影響は当観測点については認められない.

謝辞

国立研究開発法人防災科学技術研究所の広帯域地震観測網F-netの波形データを使用させて頂きました。

キーワード:広帯域地震計、速度型強震計、パワースペクトル密度、ノイズレベル Keywords: Broadband Seismograph, Strong Motion Velocity-type Seismograph, Power Spectral Density,

Noise Level

