ユーラシア大陸上空の対流圏界面領域におけるCH₄の変動と炭素・水素同位体比に基づいたその解釈

Methane variations observed in the upper troposphere/lowermost stratosphere over the Eurasian Continent and their interpretation based on the carbon and hydrogen isotopic ratio

*藤田 遼 1 、森本 真司 1 、稲飯 洋 1 、青木 周司 1 、町田 敏暢 2 、澤 庸介 3 、松枝 秀和 3 、丹羽 洋介 3 、坪 井 一 3 3、勝又 啓 2 2、梅澤 拓 2 、中澤 高清 1

*Ryo Fujita¹, Shinji Morimoto¹, Yoichi Inai¹, Shuji Aoki¹, Toshinobu Machida², Yousuke Sawa³, Hidekazu Matsueda³, Yosuke Niwa³, Kazuhiro Tsuboi³, Keiich Katsumata², Taku Umezawa², Takakiyo Nakazawa¹

- 1. 東北大学大学院理学研究科大気海洋変動観測研究センター、2. 国立環境研究所、3. 気象庁気象研究所
- 1. Center for Atmospheric and Oceanic Studies, Graduate School of Science, Tohoku University, 2. National Institute for Environmental Studies, 3. Meterological Research Institute

北半球高緯度域において、CH₂の時空間変動およびその放出源を明らかにするために、航空機を用いた キャンペーン観測がこれまで複数回行われてきた。しかし、CH、濃度と同時にその放出・消滅過程の情報を含 む炭素・水素同位体比(δ^{13} C, δ D)を対流圏界面領域(上部対流圏(UT)/成層圏最下部(LMS)領域)で系統的 に観測した例はこれまでに僅かである。本研究は、2012年4月からパリ(モスクワ)-羽田(成田)間におい て民間航空機上で採取された大気試料を分析して、北半球高緯度域のUT/LMS領域における CH_a 濃度、 δ^{13} C, δ Dの時空間変動の実態を明らかにした。LMSでは、 CH_{a} 濃度と δ 13C, δ Dは明瞭な逆位相の変動を示 し、CH,濃度($\delta^{13}C$, δD)は11-1月に極大(極小)を、3-5月に極小(極大)を示した。この変動原因とし ては夏から秋にかけて低緯度側から対流圏起源の空気塊(高濃度かつ低同位体比)が流入すること、冬から春 にかけてブリューワー・ドブソン循環に伴って成層圏深部起源(低濃度かつ高同位体比)の空気塊が沈降する ことが考えられた。客観再解析データ(ERA-Interim)を用いて後方流跡線解析を実施したところ、観測され た δ^{13} Cと δ Dは,観測地点における空気塊の渦位よりも,2-3週間前の空気塊地点における渦位との相関 が、全ての季節について高いことが示された。このことは、各季節の中で重い同位体比を持つ空気塊は大気採 取地点に対してより高高度/高緯度側に,軽い同位体比を持つ空気塊はより低高度/低緯度側に起源があること を示唆している。また、 $\mathrm{CH_4}$ 濃度と $\delta^{13}\mathrm{C}$ の相関を調べることにより、北半球高緯度のUT/LMS領域における CH_a の消滅過程についての解釈を試みた。 CH_a 濃度と δ^{13} Cへの同位体分別効果を検討した結果,UTでは CH_a と水酸基ラジカル(OH)との反応による消滅が支配的である一方で、LMSではOHによる消滅に加えて、塩素 ラジカル(CI),励起酸素原子($O(^1D)$)との消滅反応の影響を受けている可能性が示唆された。

キーワード:メタン、同位体、対流圏界面領域、後方流跡線解析

Keywords: methane, isotopic ratio, UT/LMS region, backward trajectory analyses