Response of sea surface fugacity of ${\rm CO_2}$ to the Southern Annular Mode (SAM) shift south of Tasmania

*Liang Xue¹, Libao Gao¹, Weidong Yu¹, Meng Wei¹

1. FIO, SOA, China

Using observational data collected south of Tasmania during 14 austral summer cruises during 1993-2011, we examined the response of sea surface fugacity of carbon dioxide (fCO_2) to the Southern Annular Mode (SAM) shift, which occurred around 2000. In the southern part of the Southern Ocean (SO) or the Polar Zone (PZ) and the Polar Frontal Zone (PFZ), fCO_2 increased faster at the sea surface than in the atmosphere before the SAM shift, but not after the shift. In the northern part of the SO or the Sub-Antarctic Zone (SAZ), however, surface fCO_2 increased faster than atmospheric fCO_2 both before and after the shift. The SAM shift had an important influence on the surface fCO_2 trend in the PZ and PFZ, but not in the SAZ, which we attribute to differences in regional oceanographic processes (upwelling vs. non-upwelling). The SAM shift may have reversed the negative trend of SO CO_2 uptake.

Keywords: Southern Ocean, Southern Annular Mode shift, Carbon cycling