Juno-Ground-Radio Observation Support Tools *Baptiste Cecconi^{1,2,3,4}, Philippe Zarka^{1,2}, Renaud Savalle³, Pierre Lesidaner³, Corentin Louis^{1,2}, Laurent Lamy^{1,2}, Andree Coffre², Laurent Denis², Cedric Viou², Alexander A Konovalenko⁵, Vyacheslav Zakharenko⁵, Serge Yerin⁵, Anastasia Skoryk⁵, Yasumasa Kasaba⁶, Hiroaki Misawa⁶, Fuminori Tsuchiya⁶, Yasuhide Hobara⁷, Tomoyuki Nakajo⁸, Kasumasa Imai⁹, Vladimir Riabov¹⁰, Hanna Rothkaehl¹¹, Glenn S Orton¹², Tom Momary¹², Jean-Mathias Griessmeier¹³, Masafumi Imai ¹⁴, Julien N Girard¹⁵, Marin Anderson¹⁶, Nicolas Andre^{17,4}, Vincent Genot^{17,4}, Rob Ebert¹⁸, Tobia Carozzi¹⁹, Tomoki Kimura²⁰, William S Kurth¹⁴, Chuck A Higgins^{21,22}, John L Mugler²¹, Dave Typinski²², Tracy Clarke²³, Jim Sky^{24,22}, Richard Flagg²², Francisco Reyes²², Wes Greenman²², Jim Brown²², Andy Mount²², Tom Ashcraft²², Jim Thieman^{25,22}, Whit Reeve²², Shing Fung^{25,22}, Todd King²⁶, Mark Sharlow²⁶, Scott Bolton¹⁸ 1. LESIA, Observatoire de Paris, CNRS, PSL Research University, Meudon, France, 2. Station de Radioastronomie de Nancay, Observatoire de Paris/PSL Research University/CNRS/Université d'Orléans, Nancay, France, 3. PADC, Observatoire de Paris/PSL Research University/CNRS, Paris, France, 4. CDPP, CNES/CNRS/Université Paul Sabatier/Observatoire de Paris, Toulouse, France, 5. Institute of Radio Astronomy, Ukrainian Academy of Sciences, Kharkov, Ukraine, 6. Tohoku University, Sendai, Japan, 7. University of Electro-Communications, Tokyo, Japan, 8. Fukui University of Technology, Fukui, Japan, 9. Kochi National College of Technology, Nankoku, Japan, 10. Future University, Hakodate, Japan, 11. Space Research Center, Polish Academy of Sciences, Warsaw, Poland, 12. Jet Propulsion Laboratory, NASA, Pasadena, CA, USA, 13. LPC2E, CNRS/Université d'Orléans, Orléans, France, 14. Department of Physics and Astronomy, University of Iowa, Iowa-City, IA, USA, 15. AIM/IRFU/SAp-CEA, Université Paris Diderot, Saclay, France, 16. California Institute of Technology, Pasadena, CA, USA, 17. IRAP, CNRS, Université Paul Sabatier, Toulouse, France, 18. Space Science Department, Southwest Research Institute, TX, USA, 19. Institute of Space and Geophysics, Chalmers, Onsala, Sweden, 20. RIKEN, Tokyo, Japan, 21. Middle Tennessee State University, Murfreesboro, TN, USA, 22. RadioJOVE, 23. Naval Research Laboratory, Washington DC, USA, 24. Radio-Sky Publishing, USA, 25. NASA-Goddard Space Flight Center, Greenbelt, MD, USA, 26. IGPP, UCLA, Los Angeles, CA, USA In the frame of the NASA/Juno mission, an international support activity with observations in the low frequency radio range has been set up. We are proposing a new set of tools directed to data providers as well as users, in order to ease data sharing and discovery. The data service we will be using is EPN-TAP, a planetary science data access protocol developed by Europlanet-VESPA (Virtual European Solar and Planetary Access). This protocol is derived from IVOA (International Virtual Observatory Alliance) standards. Data from all major decametric radio instruments will contribute: Nançay Decameter Array (France), LOFAR (France, Sweden, Poland), URAN (Ukraine), LWA (USA), litate Radio Observatory (Japan), etc. Amateur radio data from the RadioJOVE project is also available. We will first introduce the VO tools and concepts of interest for the planetary radioastronomy community. We will then present the various data formats now used for such data services, as well as their associated metadata. We will finally show various tools that make use of this shared datasets. This activity also supports the development of the ESA/JUICE (Jupiter Icy Moon Explorer) mission, and that of the planetary sciences virtual observatory. Keywords: Jupiter, Decametric Radio Emissions, Juno, Virtual Observatory