## 白馬八方の蛇紋岩温泉に由来する炭化水素の分子および分子内炭素安定同 位体解析

## Compound- and position-specific carbon isotopic study of hydrocarbons from serpentinite-hosted hot spring in Hakuba Happo, Japan

\*須田 好<sup>1</sup>、Gilbert Alexis<sup>2</sup>、山田 桂大<sup>3</sup>、吉田 尚弘<sup>2,3</sup>、上野 雄一郎<sup>2,4,1</sup> \*Konomi Suda<sup>1</sup>, Alexis Gilbert<sup>2</sup>, Keita Yamada<sup>3</sup>, Naohiro Yoshida<sup>2,3</sup>, Yuichiro Ueno<sup>2,4,1</sup>

 海洋研究開発機構、2.東京工業大学 地球生命研究所、3.東京工業大学 物質理工学院 応用化学系、4.東京工業大学 理学院 地球惑星科学系

1. Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2. Earth-Life Science Institute (WPI-ELSI), Tokyo Institute of Technology, 3. Department of Chemical Science and Engineering, Tokyo Institute of Technology, 4. Department of Earth and Planetary Sciences, Tokyo Institute of Technology

Olivine is one of the major constituent minerals of various meteorites (Rubin, 1997). During serpentinization process of ultramafic rocks, water in contact with olivine is reduced to form molecular hydrogen ( $H_2$ ) (e.g., McCollom and Bach, 2009). The highly reduced ( $H_2$ -rich) condition created by serpentinization is thermodynamically favorable for abiotic organic synthesis. Elevated concentrations of CH<sub>4</sub> and higher hydrocarbon gases have been observed in serpentinite-hosted systems, regardless of continental or seafloor setting (e.g., Charlou et al., 2002; Proskurowski et al., 2008; Etiope et al., 2011; Szponar et al., 2013). Abiotic synthesis has been invoked to account for the carbon isotopic distribution among low-molecular weight hydrocarbons (e.g., Proskurowski et al., 2008). However, uncertainties still remain regarding specific abiotic production mechanisms for serpentinite-hosted systems. In this study, we report a new geochemical study of hydrocarbon gases (methane, ethane, propane, butane, pentane) from the borehole well at the on-land hot spring associated with serpentinization in Hakuba Happo, Japan. We have conducted position-specific as well as compound-specific stable carbon isotopic analyses of hydrocarbons.

The gas samples were collected from Hakuba Happo hot spring that lies on an serpentinized ultramafic rock body. Highly-alkaline hot spring water with temperature of around 50°C mainly contains N<sub>2</sub>, H<sub>2</sub> and  $CH_4$  gases (Homma and Tsukahara, 2008; Suda et al., 2014). The concentrations of  $C_1$  to  $C_5$ hydrocarbons were determined by Gas Chromatography. A compound-specific carbon isotope measurement for C1-C5 hydrocarbons was performed by GC-C-IRMS coupled with an on-line pre-concentration system. A position-specific <sup>13</sup>C composition in propane molecule (C<sub>3</sub>H<sub>8</sub>) was measured using the GC-Py-GC-C-IRMS (Gilbert et al., 2016) coupled with an on-line pre-concentration system. The straight chain alkanes (*n*-alkanes) for the Happo sample show an isotopic depletion in <sup>13</sup>C with increasing carbon number ( $\delta^{13}C_1 > \delta^{13}C_2 > \delta^{13}C_3 > ...$ ). This <sup>13</sup>C depletion trend is very similar to those of some seafloor serpentinite-hosted hydrothermal systems (Proskurowski et al., 2008; Charlou et al., 2010), and undisputed abiogenic origin for the Murchison meteorite (Yuen et al., 1984). The observed isotopic trend can be explained by a simple polymerization model developed in this study. Our model assumes that, for any particular alkane, (i) all of the subsequently added carbon atoms that are bonded to the growing carbon chain have the same isotopic composition, and (ii) those are depleted in <sup>13</sup>C with respect to the first carbon atom that initiates the carbon chain. The fit of this model suggests that n -alkanes for the Happo sample can be formed via polymerization from single-carbon compound (potentially methane) with a constant kinetic isotopic fractionation of -8.9 ±1.0%. To understand the type of polymerization mechanism, we next focus on the position-specific carbon isotopic compositions of

hydrocarbons. For the first time, we applied a new method, namely position-specific <sup>13</sup>C analysis of propane, to a natural sample derived from a serpentinite-hosted system. The difference of  $\delta$  <sup>13</sup>C values between terminal and central carbon atom positions of propane molecule for the Happo sample was -1.2 ±0.9‰. We show the important potential of the position-specific <sup>13</sup>C analysis to identify different polymerization mechanisms that can not be discriminated by compound-specific isotopic analysis.

キーワード:蛇紋岩、炭化水素、分子内同位体分析、安定炭素同位体

Keywords: serpentinite, hydrocarbon, position-specific isotope analysis, stable carbon isotope