# Ab initio lattice thermal conductivity of MgO using a full solution to the linearized Boltzmann transport equation 

＊出倉 春彦 ${ }^{1}$ ，土屋 卓久 ${ }^{1}$

＊Haruhiko Dekura ${ }^{1}$ ，Taku Tsuchiya ${ }^{1}$

1．愛媛大学地球深部ダイナミクス研究センター
1．Geodynamics Research Center，Ehime University

Lattice thermal conductivity，$\kappa_{\text {lat＇}}$ of MgO at high pressures and temperatures，up to 150 GPa and 4000 K ， are determined using lattice dynamics calculations and the linearized phonon Boltzmann transport equation（BTE）beyond the relaxation time approximation（RTA）from first principles．It is found that the complete solution of the linearized BTE substantially corrects values of $\kappa_{\text {lat }}$ calculated with the RTA by $\sim 30 \%$ ，from $\sim 39 \mathrm{~W} \mathrm{~m}^{-1} \mathrm{~K}^{-1}$ to ${ }^{\sim} 50 \mathrm{~W} \mathrm{~m}^{-1} \mathrm{~K}^{-1}$ under ambient conditions．The calculated values of $\kappa_{\text {lat }}$ are in good agreement with those from the existing experiments．At conditions representative of the Earth＇s core－mantle boundary（ $P=136 \mathrm{GPa}$ and $T=3800 \mathrm{~K}), \kappa_{\text {lat }}$ is predicted to be $\sim 31 \mathrm{~W} \mathrm{~m}^{-1} \mathrm{~K}^{-1}$ and $\sim 39 \mathrm{~W} \mathrm{~m}^{-}$ ${ }^{1} \mathrm{~K}^{-1}$ by RTA and the full solution of BTE，respectively．We report a detailed comparison of our study with earlier theoretical studies．

キーワード：下部マントル鉱物，格子熱伝導率，コンヒ ュータシミュレーション，フォノン－フォノン相互作用，密度汎関数理論
Keywords：Lower mantle minerals，Lattice thermal conductivity，Computer simulation，Phonon－phonon interaction，Density－functional theory

