Precise Synthesis, Characterization, and Reactivity of Multi-functional Catalysts

Seoul National University of Science and Technology

Insoo Ro *

1. Introduction

Beyond the maximized atomic efficiencies and cost savings, atomically dispersed catalysts have attracted great attention in recent years due to the uniformity in active sites and careful regulation over local environments of active sites. Thus, it is interesting to investigate how the dispersed active environment site-support can be precisely engineered to control catalytic reactivity. In this work, we demonstrate control over the local coordination environment of atomically dispersed Rh on Al₂O₃ through a systematic tuning of interactions between Rh and ReO_x or WO_x species. Through this precise engineering of the local environment of atomically dispersed Rh species on an oxide support, it is shown that the local environment of the active site are significantly influenced, which in turn control ethylene hydroformylation reactivity. Whereas ReO_x were atomically dispersed on Al₂O₃ regardless of Re loading, the structure of WOx on Al₂O₃ varied (atomically dispersed WO_x, polystungstate monolayer, to monoclinic WO_3 crystallites) by changing W loading, which influences the intrinsic reaction kinetics.

2. Experimental

Supported atomically dispersed Rh catalysts were prepared by a strong electrostatic adsorption method. Catalysts were characterized by a range of techniques, including UV-Vis and Raman spectroscopy, CO probe molecule infrared (IR), and transmission electron microscopy to understand the local structure and Rh charge state.

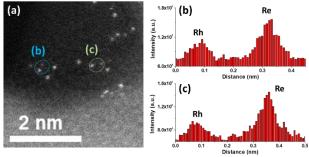

3. Results and Discussion

Figure 1 (a) and (b,c) show representative image of the Rh/ReO_x-Al₂O₃ and corresponding line scan intensity analysis of the two selected dimers, respectively. The difference in scattering intensity of Rh and Re species due to their different atomic mass (intensity $\alpha Z^{1.5-2}$, where Z represents atomic number) evidences the formation of Rh-ReO_x atomically dispersed site pairs in Rh/ReO_x-Al₂O₃.

For ethylene hydroformylation, the propanal formation was greatly enhanced over Rh/ReO_x - Al_2O_3 and Rh/WO_x - Al_2O_3 relative to Rh/Al_2O_3 , resulting in the higher selectivity toward propanal up to 63%. Interestingly, the selectivity toward propanal substantially changed depending on WO_x structure nearby dispersed Rh species. When Rh were localized with atomically dispersed WO_x (Rh/1 WO_x -

Al₂O₃), the selectivity toward propanal is the higher (63%) than Rh on bare Al₂O₃ (Rh/Al₂O₃, 22%), a polystungstate monolayer (Rh/2WO_x-Al₂O₃, 43%) and monoclinic WO₃ crystallites (Rh/8 and 25WO_x-Al₂O₃, 50%).

Kinetic experiments revealed that Rh/ReO_x-Al₂O₃ and Rh/WO_x-Al₂O₃ have higher CO reaction orders relative to Rh/Al₂O₃, indicating a decrease in the CO binding energy on Rh in Rh-ReO_x and Rh-WO_x colocalized structures, which was further evidence by CO temperature program desorption (TPD) characterization. This suggests that the promoted reactivity for Rh/ReOx-Al2O3 and Rh/WOx-Al2O3 was primarily due to an increase in the concentration of vacant sites under reaction conditions. As shown in Figure 2, the CO reaction orders increased and became positive over Rh/1 and 3WOx-Al₂O₃, potentially suggesting that C₂H₄ adsorbed on atomically dispersed WO_x reacts with CO on nearby dispersed Rh. Two classes of active sites consisting of Rh and WO_x with an atomic intimacy allow a cooperative bifunctional mechanism when Rh is coordinated with atomically dispersed WO_x, consistent with previous report studies reporting atomically dispersed WO_x as active sites for olefin metathesis.

Figure 1. (a) HAADF STEM image of Rh/ReO_x-Al₂O₃. (b,c) Corresponding line scan intensity analysis of the two selected dimers shown in (a).

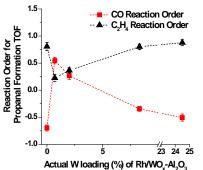


Figure 2. CO and C_2H_4 reaction orders for propanal formation TOF as a function of actual W loading of Rh/WO_x-Al₂O₃.