Highly efficient removal of ethylene at 0 °C over Au-Pt/zeolite

(¹Tokyo Metropolitan University, ²Yantai University)

○Mingyue Lin^{*1}, Haifeng Wang^{*1}, Tetsuya Shishido^{*1}, Hiroki Miura^{*1}, Masatake Haruta^{*1}, Toru Murayama^{*1,2}

1. Introduction

Ethylene (C_2H_4) released from the plants could fasten the mature and deterioration of fresh fruits and vegetables even at low temperatures since it is a natural gaseous plant hormone. To prolong the storage time of the fresh plants during the transportation, removing trace amounts of C_2H_4 is important, and selective catalytic oxidation of C_2H_4 to CO_2 is an ideal method.¹ However, almost all of the reported catalysts would be deactivated due to the water adsorption, usually within 1 h. Therefore, it is necessary to develop a more effective material with a high C_2H_4 removal efficiency and long-term stability at low temperatures ($0\sim5$ °C).

Here, we report an Au-Pt/zeolite (ZHM20) with a highly active C_2H_4 removal efficiency (81%) and long-term stability (40 h) for C_2H_4 elimination at 0 °C.

2. Experimental

Mordenite 20 (ZHM20, SiO₂/Al₂O₃=18.3) provided by the Catalysis Society of Japan was used as the support. The loading amount of nanoparticles was prepared as 1wt%. Sol immobilization method² was applied to prepare ZHM20, Pt/ZHM20, Au/ZHM20, and Au_xPt_y/ZHM20 (x and y represent the molar ratio of Au and Pt, respectively) and they were calcined at 500 °C for 2 h before being used.

A fixed-bed flow reactor was used to conduct the C_2H_4 removal test. The sample (0.2 g) was firstly pretreated at 150 °C for 2 h under N₂ with a flow rate of 50 mL min⁻¹ before being evaluated under the reactant gas that contained 50 ppm C_2H_4 , 20% O_2 , and N₂ balance with a total flow rate of 10 mL min⁻¹. The inlet and outlet concentrations of C_2H_4 and CO_2 were analyzed by an online 490 Micro GC system (Agilent) for calculating the removal efficiency of C_2H_4 and the yield of CO_2 .

3. Results and Discussion

As shown in Figure 1, the initial C₂H₄ removal efficiency over ZHM20 was 100% at 0 °C and it reached the maximum adsorption capacity after flowing 11 h of 50 ppm C₂H₄. The removal efficiency curves of Pt/ZHM20 and Au/ZHM20 were U-shaped. Initially, the removal efficiency was 100% and it decreased to 19% and 15% after 10 h-on-stream over Pt/ZHM20 and Au/ZHM20, respectively, which was the same with that observed from ZHM20, suggesting that this step might be owing to the adsorption of C₂H₄ on ZHM20. Then, the C₂H₄ removal efficiency increased until reaching the steady-state of 56% on Pt/ZHM20 and 45% on Au/ZHM20. Au $_{54}\text{Pt}_{46}/\text{ZHM20}$ also showed a U-shape removal efficiency curve, but the turning point time of 3.5 h was much shorter than the other two. Moreover, the C₂H₄ removal efficiency of Au₅₄Pt₄₆/ZHM20 at the steady-state was 81% and it lasted for as long as 40 h. According to the electronic state analysis, Au₅₄Pt₄₆/ZHM20 possessed electron-deficient Pt species and electron-rich Au species, which might be helpful for the faster adsorption and transformation of C₂H₄ on Au₅₄Pt₄₆ NPs than that on Au NPs and Pt NPs.

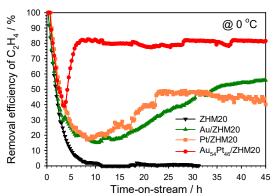


Figure 1. The removal efficiency of C_2H_4 with time-onstream over ZHM20, Au/ZHM20, Pt/ZHM20, and Au₅₄Pt₄₆/ZHM20 at 0 °C.

¹⁾ C. Jiang, K. Hara, A. Fukuoka, Angew. Chem. Int. Ed., 52(24), 6265 (2013)

²⁾ H. Miura, Y. Tanaka, K. Nakahara, Y. Hachiya, K. Endo, T. Shishido, *Angew. Chem. Int. Ed.*, 130(21), 6244 (2018)