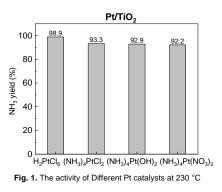
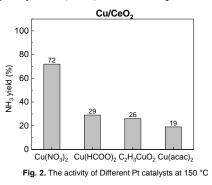
Catalytic reduction of NO to ammonia by H₂ or CO-H₂O over metal oxide supported catalyst.

(FREA¹, TIT₂) OC. Chaudhari,¹ K. Kobayashi,¹ Y. Manaka^{1,2*} T. Nanba¹

1.Introduction


Ammonia is an important N-containing chemical which is used as fertilizer, starting material for heterocycles sthe synthesis and carbon-free fuel. Ammonia is synthesized industrially by Haber-Bosch method with high energy consumption. Ammonia synthesis from air pollutant NO is an attractive alternative to reduce the concentration of NO. Several reductants such as hydrocarbon, H₂ or CO-H₂O have reported for the transformation of NO to NH₃. Recently, our group developed Pt/TiO₂ catalyst for ammonia synthesis on NO-CO-H₂O reaction.¹ However, the activity of Pt/TiO2 was not studied for NO-H₂ reaction. In this study, we investigated and optimized the catalytic activity of Pt/TiO₂ for NH₃ synthesis. Furthermore, the activity of Cu/CeO₂ catalyst at lower temperature (>200 °C) investigated for NO-CO-H₂O reaction.

2. Experimental


Supported metal catalysts were prepared by an incipient wetness method with different Pt or Cu precursors. TiO₂ or CeO₂ support was prepared by solgel method using different conditions. All catalysts were characterized by BET and CO adsorption. The catalytic activity was measured by a fixed-bed flow reactor. For NO-H₂ reaction, the feed gas was composed of 0.1 % NO, 0.3% H₂ ppm with dilution by Ar. For NO-CO-H₂O reaction, the feed gas was composed of 0.1 % NO, 0.3% CO and 1% H₂O ppm with dilution by Ar. The total flow was set to 250 mL/min. The product gases were analyzed online Fourier transform infrared spectroscopy and gas chromatography.

3. Results and Discusion

Initially, we synthesized Pt/TiO_2 catalyst using different precursor such as $(NH_3)_4Pt(NO_3)_2$, $(NH_3)_4Pt(Cl)_2$, $(NH_3)_4Pt(OH)_2$ and H_2PtCl_6 and tested for NO-H₂ reaction. All precursors showed full conversion (100 %) of NO. The catalytic activity of all four precursors for ammonia selectivity was almost similar at lower temperature (100 °C-150 °C). When the temperature increased to 230 °C, H₂PtCl₄ showed superiority (99 %) for the synthesis of ammonia (Fig.1). Later, we investigated the effect of reduction temperature using different temperatures (400 °C, 500 °C and 600 °C). When Pt/TiO₂ catalyst prepared from H₂PtCl₄ precursor reduced at 400 °C, high yield of ammonia (98.9%) was obtained at 230 °C.

For NO-CO-H₂O reaction, we examined Cu/CeO₂ catalysts prepared from different precursors at 150 °C. The catalyst prepared from Cu(NO₃)₂ precursor showed higher yield (72%) than other precursors.

In summary, Pt/TiO_2 prepared from H_2PtCl_6 found to be an active catalyst for ammonia synthesis over NO- H_2 reaction. In NO-CO-H₂O reaction, Cu/CeO₂ catalyst showed high activity for ammonia synthesis.

¹K. Kobayashi, R. Atsumi, Y. Manaka, H. Matsumoto, T. Nanba, *Catal. Sci. Technol.*, **9**, 289 (2019).