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1) H. Saito et al., RSC Adv., 10 (2020) 21427-21453.

2) T.Ren et al., Energy., 31 (2006) 425-451.

3) H. Saito et al., J. Phys. Chem. C., 123 (2019) 26272-
26281.

4) Y. Hosono et al., J. Phys. Chem. C., 125 (2021)
11411-11418.

5) K. Watanabe et al., RSC Adv., 12 (2022) 24465-
24470.
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Direct synthesis of gasoline-ranged olefins from syngas over a
Na promoted Fe@Na-ZSM-5 capsule catalyst

(Univesity of Toyama) OXu Sun, Yingluo He, Guohui Yang, Noritatsu Tsubaki

1. Introduction

Fischer-Tropsch synthesis (FTS) is a catalysis
process to convert syngas (a mixture of CO and H») into
hydrocarbons and oxygenates.! Direct synthesis of olefins
from syngas using metal-zeolite composite catalysts has
attracted lots of attentions for decades. In this work, we
designed a novel capsule-like Fe@Na-ZSM-5 catalyst for
one-step conversion of syngas to Cs: olefins. The Fe@Na-
ZSM-5  catalyst realized the  gasoline-ranged
hydrocarbons selectivity of 52.5 %, in which olefins
accounted for more than half. The characterization results
indicated that the promoter of Na ions facilitated the
formation of FesC, phases during FTS reaction, therefore
favoring C-C coupling and leading to high gasoline-
ranged olefins selectivity. In this work, the novel Na
electron promoted metal-zeolite capsule catalyst and its
application in FTS for olefins direct synthesis would

greatly promote the development of heterogeneous

catalysts and functional materials.

2. Experimental

NaZSM-5 (NaZ5) catalyst was prepared in a similar
procedure by the solvent-free grinding SiO,, AIOOH,
TPAOH and NaOH for 10 min. This mixture was
transferred into a Teflon-lined stainless-steel reactor and
heated in an autoclave at 180 °C for 24 h. The sample was
then washed, filtrated, and dried at 120 °C overnight.
Finally, the composite was obtained after was obtained
after calcination at 550 °C for 5 h. Fe@NaZ5 can be
obtained by adding Fe,Os during the grinding process.

NaoH Fe:0; TPAOH

Sioz\\l' /

Fe@NaZsM-5 Gasoline ranged

Olefins

Figure 1. The morphology of Fe@NaZSM-5 catalysts in FTS.

3. Results and Discussion

The FTS activity and performances for all the
catalysts are revealed in Fig.2. Relatively higher Cs:
selectivity is achieved on zeolite-supported catalysts over
the bulk Fe,O3; and Fe/SiO, samples. It suggests that the
textural and acidic properties of zeolite influence the chain
growth of the primary hydrocarbons. Fe@NaZ5 catalyst
demonstrates the highest selectivity of 52.5 % for
gasoline-ranged hydrocarbons of which 30.2 % were
olefins. The total olefins recorded on this sample was
36.6 %, which was the highest among all the samples. It
indicated that the Fe@NaZ5 sample possesses the highest
surface area with a possibly higher encapsulation Fe in
zeolite rate over the zeolite-based samples. Fe@HZ5
demonstrated much lower Cs+ and olefins selectivity when
compared to Fe@NaZ5. The higher measure of FesC,
phase on the spent Fe@NaZ5 can be credited for the high
Cs+ and olefins selectivity obtained. As Na ions not only
facilitates the formation and stability of active phase FesCa
but also inhibits the secondary hydrogenation step which
resultantly enhance the olefins selectivity in overall

hydrocarbons.?
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Figure. 2 (a) Catalyst performance and product distribution, (b)

Product distribution in hydrocarbons and Os.;; proportion in Cs.j;.

1. Zhuo Y, Zhu L, Liang J, et al. Fuel 2020, 262, 116490.
2. Liang B, Duan H, Sun T, et al. ACS Sustainable Chem.
Eng. 2019, 7 (1), 925-932.

Copyright(C) The Japan Petroleum Institute 2022 All rights reserved. 2F16 -



2F1 7 Nagano Conv. of JPI (52nd Petroleum-Petrochemical Symposi...

Electrochemical reduction of CO, to multi-carbon products
using copper-based catalysts

(University of Toyama) (OWenhang Wang, Yingluo He, Guohui Yang, Noritatsu

Tsubaki

1. Introduction Under the synergistic effects of [Omim]* and CI,

The electrochemical reduction of CO; to multi-  the novel quasi-spherical Cu;O on ILGS with
carbon products is a promising option for tackling abundant oxygen vacancies was prepared, which
carbon emissions and restoring renewable behaved with excellent catalytic performance

electricity”. Optimizing the morphology and towards CO; electroreduction to C; products.

enhancing the oxygen vacancy of Cu,O has proven \21 00 —T13 4.0
to be an effective strategy for boosting the E;,sn- Blc, |ss
conversion of CO; to C, products®. Here, we used a § * 20 6

. . . . . . ‘O 8]
halogen-containing  ionic  liquid,  1l-octyl-3- %’ 60 . :’ 550
methylimidazolium  chloride, to tailor the L a0 .
morphology of Cu,O nanoparticles and increase its g = 20
amount of oxygen vacancies, which exhibited i J . . l"'s
excellent performance for the electrochemical 0- . o pr N 10
reduction of CO; to multi-carbon products®. o™ 569‘\@% 0‘,9“"6% o™

2. Experimental Figure 1 Faradaic efficiency of C; and C; products at -

2.1 Catalysts synthesis 1.15 V (vs. RHE) in an H-cell.

The ionic liquid functionalized graphite sheets By adjusting the content of [Omim]Cl, the

(ILGS) were synthesized according to our previous optimum catalyst of Cu,O/ILGS-400 performed

work. Then, Cu(OH)»/ILGS precipitate was prepared
by adding NaOH into the CuCl; solution. After that,

the best performance with a faradic efficiency (FE)
of 62.4% for C, products at-1.15 V (vs. RHE) in an
H-cell with 0.1 M KHCOs as electrolyte. By using
1 M KOH as an electrolyte in a flow cell, the FE of
C; products was raised to 78.5% =+ 2% with a

it was reduced to Cu,O/ILGS-x by a certain content
of [Omim]ClI and L-ascorbic acid (x = 800, 400, 200,
where x represents the volume ratio of the final

solution to [Omim]Cl). Without [Omim]|ClI,
current density of 123.1 mA c¢cm™ at -1.1 V (vs.

RHE).

CuO/ILGS was prepared as the control experiment.
2.2 CO; electrochemical measurements
All electrochemical tests in an H-type electrolytic This work may open a new horizon toward the

cell (H cell) and a flow cell with three electrodes controllable synthesis of metal oxides for CO;

system by a CHI 760E electrochemical workstation, reduction and other electrocatalysis processes.

respectively. The anode and cathode were separated

by an exchange membrane. The working electrode 1) He, M., Sun, Y., et al.; Angew. Chemie - Int. Ed., 61,
€202112835 (2022).

2) Wang W., Ning H., et al.; Electrochim Acta, 306, 360-

was prepared by electrocatalysts, while an Ag/AgCl

electrode and a platinum gauze were used as a

reference and counter electrodes, respectively. 365 (2019).
. . 3) Wang W., Ma Z., et al.; Chem. Eng. J., 436, 135029
3. Results and Discussion ) Wang asocta em. =g
(2022).
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Low Temperature Oxidative Coupling of CH4 over
Cerium Oxide Based Catalyst

(The University of Kitakyushu) OEllen Gustiasih Maulidanti, Masashi
Awaji, Riko Osaki, Kenji Asami

1. Introduction

Eliminating the deep oxidation in the gas
phase through surface dimerization of
CHjs radicals is a possible way to increase
C, yield in oxidative coupling of methane
(OCM). A low temperature reaction is
required to prevent the CHj; radicals
desorption into the gas phase. To
accomplish this goal, the cerium catalyst
with varied metal incorporation were
developed.

2. Experimental

A series of MCY catalyst with varied M
cations (M = Co, Ni, Fe) and varied of
Cerium (Y = W is for nanoparticle, A is
for microparticle, B is for nanocube) are
prepared by impregnation method. The
catalysts were characterized by XRD, N,
ads-des, and Raman spectroscopy. The
OCM reaction was evaluated in a fixed
bed reactor with reaction condition as
shown in Table 1.

3. Results and discussion

Table 1

The incorporation of metal cation into all types
of CeO, can obtain a catalyst with more
mesoporous pore structure and higher surface
area. Pure CB possessed the best catalytic
activity at 500 °C (Table 1), which indicate that
CB produce higher amount of OSC than
irregular CeO, that influence oxidation
performance at low temperature [1]. As 5% of
metal (Co, Ni, and Fe) added, the CHs
conversion has risen. 5% Fe;04/CeO,(5FeCA)
possessed the best catalytic activity at 500 °C
and CH4/O; ratio in 3/1. Furthermore, SFeCA
produced better performance at 500 mg catalyst
and the ratio of CH4/O> ratio in 2:1 which gives
SFeCA catalyst has the best performance
among all. The increase of Fe content is aligned
with the CHs conversion and C; yield.
However, 20% of Fe (20FeCA) possessed
lower CH4 conversion and C; yield than 5% of
Fe. According to XRD, the presence of a-Fe,Os3
on 20FeCA could reduce catalyst activity [2].
[1]Zhang, J., et al., Nano Lett., 11, 361(2011).
[2]Perezalonso,F., et al., J. Catal., 239, 340(2006).

talyst [CW | CA CB [5CoCW

SNiCW [5FeCW |SFeCB |S5FeCA |1FeCA |20FeCA

Perform Reaction condition: CH4/O; ratio in 3/1; 500 °C; 100 mg of catalyst

CH4 3;0 [19;0.1 [19;0.3 | 18;0 18;0.1 |17;0.1 [16.4;0.7 -
Conversi Reaction condition: CH4/O; ratio in 2/1; 500 °C; 100 mg of catalyst

o ) \ 2

C, Yield Reaction condition: CH4/O; ratio in 2/1; 500 °C; 500 mg of catalyst

(%) 27;1.4 26509 | 28;0.5
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Fig. 2(a) XRD patterns and (b) Raman spectra
of K:Mo/SiO; catalyst after CH3;SH synthesis.

1) M. Yu et al., J. Catal., 405 (2022) 116.
2) J. Baltrusaitis et al., Appl. Catal. B, 187 (2016) 195.
3) C. Cammarano ef al., ACS Catal., 9 (2019) 605.
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