Defect control of Y2O3-based SiGe MOS interfaces properties ^o T.-E. Lee, K. Toprasertpong, M. Takenaka and S. Takagi The University of Tokyo, Faculty of Engineering

E-mail: leete@mosfet.t.u-tokyo.ac.jp

1. Introduction

SiGe MOSFETs have stirred much attention as pchannel devices, because of the high hole mobility and the appropriate bandgap [1]. However, the undesired formation of GeO_x in the interfacial layers (IL) can be regarded as an origin of the MOS interface degradation [1,2]. As a result, it has been reported that D_{it} can be reduced by a GeO_x-scavenging process, where the choices of atomic layer deposition (ALD) high-k films, metal gate electrodes and annealing temperature are crucial process parameters. In this study, these impacts on D_{it} are systematically examined. Furthermore, the physical origins of the D_{it} reduction in Y_2O_3 -based SiGe MOS structures are proposed from the viewpoint of Ge-O networks at SiGe interfaces.

2. Experiment

7-nm-thick non-doped SiGe/p-type Si(100) wafers were cleaned by de-ionized water, acetone and diluted HF. Then, ALD high-k films, including Y_2O_3 , Al_2O_3 , HfO₂ and ZrO₂, and gate metals, including Al, TiN, Au and W, were employed for gate stack formation. Furthermore, plasma pre-oxidation (PO) [3] and TMA pre-treatments [4] prior to high-k deposition were also studied. PMA was finally performed for stacks at temperature of 300 to 450 °C.

3. Results and Discussion

It is found in Fig. 1(a) that D_{it} of the TiN/Y₂O₃/ Si_{0.62}Ge_{0.38} stack with PMA at 300°C is lowest among the Al/Y₂O₃, TiN/Al₂O₃ and Al/Al₂O₃ stacks. Then, the impact of PMA temperature on the TiN/Y₂O₃/ Si_{0.62}Ge_{0.38} MOS interfaces were studied. It is found in Fig. 1(b) that D_{it} is minimized at 450°C for TiN/Y₂O₃, which are also lower than for TiN/Y2O3 stacks with PO. Fig. 2 summarizes D_{it} of TiN, W and Au/Y₂O₃/SiGe gate stacks after PMA at 450°C, and D_{it} of TiN/Y2O3/SiGe gate stacks before PMA as a function of Ge contents near interfaces evaluated by EDX. The observed strong correlation between D_{it} and the Ge content near the interfaces after PMA indicates that lower D_{it} in the TiN stacks than those in the W and Au ones is attributable to smaller amounts of Ge-O bonds at the interfaces. On the other hand, significant reduction in Dit is observed in TiN/Y2O3 stacks after PMA at 450°C in spite of almost no change in the interface Ge contents, indicating that high temperature PMA itself can also reduce D_{it} of the TiN stacks.

Fig. 3 shows D_{it} of TiN/Y₂O₃, Al₂O₃, HfO₂ and ZrO₂ stacks after PMA at (a) 300 and (b) 450°C. Here, a large amount of GeO_x is confirmed near the interfaces of the ZrO₂ stacks by XPS analysis. It is found that less GeO_x can lead to lower D_{it} for all the stacks after PMA at 300 and 450°C, whereas low D_{it} in Y₂O₃ after PMA at 450°C cannot be explained only by the existence of GeO_x. Thus, this significant reduction in D_{it} can be attributed to a mechanism inherent to Y₂O₃ such as incorporation of Y atoms into networks of Ge oxides and termination of dangling bonds [5].

Fig. 4 shows D_{it} of the TiN/Y₂O₃ stacks and the amounts of Ge-O and Al-O bonds near the interfaces as a function of TMA cycle number in TMA pretreatment. The existence of the optimum TMA cycle of 10 for reduction in D_{it} can be explained by the two competing effects, less amounts of Ge-O bonds incorporated in the YSiO_x-based ILs by TMA and Al-induced increase in D_{it} .

4. Conclusions

We have demonstrated the superior SiGe MOS interfacial properties with low D_{it} by a combination of the TiN/Y₂O₃ gate stacks, PMA and the optimum TMA pre-treatment, attributed to suppression of GeO_x due to scavenging and Y-doping of GeO_x.

Acknowledgements

This work was supported by JST CREST Grant Number JPMJCR1332, Japan and a Grant-in-Aid for Scientific Research (17H06148) from MEXT. **References** [1]C.-H. Lee et al., *VLSI Symp.*, 2016, pp. 36. [2]T.-E. Lee et al., *VLSI Symp.*, 2019, T101. [3]T.-E. Lee et al., *J. Appl. Phys.* 127 (2020) 185705 [4]T.-E. Lee et al., *IEEE T-ED* 67 (2020) 4067 [5]L. Zhang et al., *ACS Appl. Mater. Interfaces*, 2016, 8, pp. 19110.

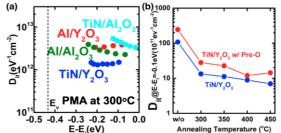
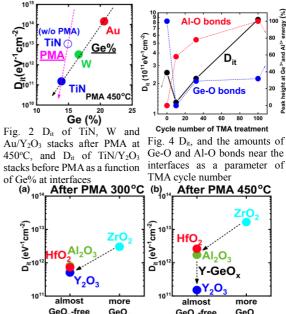



Fig. 1 (a) D_{it} distribution of Al/Y₂O₃, Al/Y₂O₃, TiN/Y₂O₃ and TiN/Al₂O₃ gate stacks after PMA at 300°C (b) D_{it} as a function of PMA temperature on TiN/Y₂O₃ gate stacks

 $\begin{array}{c|c} \textbf{GeO}_x\textbf{-free} & \textbf{GeO}_x & \textbf{GeO}_x\textbf{-free} & \textbf{GeO}_x \\ Fig. 3 \ D_{it} \ of \ TiN/Y_2O_3, \ Al_2O_3, \ HfO_2 \ and \ ZrO_2 \ stacks \ after \ PMA \\ at \ (a) \ 300 \ and \ (b) \ 450^{\circ}C, \ and \ the \ existence \ of \ GeO_x \ at \ the \\ interfaces \ is \ confirmed \ by \ XPS \ analysis. \end{array}$