HfO_2 をゲート絶縁膜とする 1.3 kV 耐圧ノーマリーオフ β – Ga_2O_3 FinFET

1.3 kV normally-off β-Ga₂O₃ vertical transistor with HfO₂ gate-insulator ノベルクリスタルテクノロジー [○]脇本 大樹, 林 家弘, ティユ クァン トゥ,

宮本 広信, 佐々木 公平, 倉又 朗人

Novel Crystal Technology

°D. Wakimoto, C.-H. Lin, Q. T. Thieu,

H. Miyamoto, K. Sasaki, and A. Kuramata

E-mail: daiki.wakimoto@novelcrystal.co.jp

β-Ga₂O₃ は、4.5 eV と大きなエネルギーバンドギャップを有し、5 MV/cm 以上の高い絶縁破壊電界を有することが予測され、SiC、GaN を凌ぐ電子物性を有するパワーデバイス用半導体材料として注目されている。これまでにドナー濃度 10^{15} cm⁻³ 台のドリフト層を用いた 2.6 kV 耐圧の縦型 MOS トランジスタ構造[1]が報告されている。我々は β -Ga₂O₃ の特徴を生かして、10 kV 級の耐圧を持つ低オン抵抗の縦型 MOS トランジスタ(FinFET)の実現を目指して開発を進めている。これまでに事前検討として、FinFET 構造のメサ底面のドリフト層を模した MOS キャパシタ構造において、低濃度、厚膜のドリフト層(4.0 x 10^{15} cm⁻³, 40 μ m)と High- κ HfO₂(比誘電率~20)絶縁膜を用いることにより β -Ga₂O₃ 及び絶縁膜中の電界強度を低減して耐圧 7.1 kV が得られることを確認した[2]。次のステップとしてエピタキシャル成長の容易な 10 μ m 厚(ドナー濃度 1.7 x 10^{16} cm⁻³)ウエハを用いて、 π FinFET 作製プロセスの開発を行った。作製した π FinFET においてエピタキシャル層の膜厚、濃度から期待される良好なオン抵抗、耐圧特性が得られたので報告する。

FinFET は、n 型 β -Ga₂O₃ 基板上にハライド気相成長(HVPE)法を用いて形成したエピタキシャル層(ドナー濃度 1.7 x 10^{16} cm⁻³、膜厚 13 μ m)に、イオン注入、電子ビーム露光、ドライエッチングを行い、微細 Fin 構造を形成し、ゲート絶縁膜として原子層堆積法(ALD)を用いて HfO_2 を 100 nm 成膜、ゲート電極として Cr、ゲート-ソース電極間の層間絶縁膜としてプラズマ TEOS、ソース電極、ドレイン電極として Ti/Au を順次形成して作製した(Fig.1)。作製した FinFET OI_d - V_d s 特性を Fig.2 に、オフ耐圧波形を Fig.3 に示す。FinFET のオフ耐圧測定はソース、ゲート電極の電圧を 0 V とし、ドレイン電極に正電圧を印加して行った。Fin 幅(W_{fin}) 0.4 μ m、Fin 長さ(I_{fin}) 60 μ m、ゲート長(I_{gate}) 2.0 μ m のトランジスタにおいて、しきい値は 1.0

本研究は、防衛装備庁が実施する安全保障技術研究推進制度 JPJ004596 の支援を受けたものであ

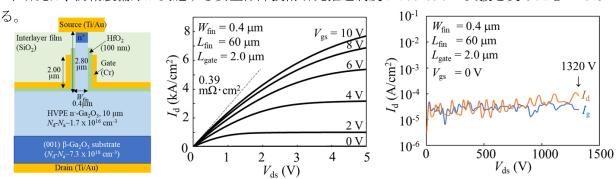


Fig. 1. β-Ga₂O₃ FinFET structure. Fig.2. *I-V* characteristics. Fig. 3. Off-state breakdown characteristics [1] W. Li *et al.*, *IEEE IEDM* Tech. Dig., p. 270 (2019).

[2] D. Wakimoto et al., 第 67 回応用物理学会春季学術講演会 (2020).