Ba_{1/3}CoO₂ エピタキシャル薄膜の熱電特性の温度依存性 Temperature Dependence of Thermoelectric Properties of Ba_{1/3}CoO₂ Epitaxial Films 北大電子研¹, 北大院情報²⁰張 雨橋¹, 高嶋 佑伍², 呉 礼奥², ジョ ヘジュン^{1,2}, 太田 裕道^{1,2} RIES¹, IST² Hokkaido Univ., ^oY. Zhang¹, Y. Takashima², L. Wu², H.J. Cho^{1,2}, and H. Ohta^{1,2}

E-mail: yuqiaozhang0730@gmail.com

Last October, we reported that a layered cobalt oxide, Ba_{1/3}CoO₂ shows thermoelectric figure of merit ZT = 0.11 at room temperature.^[1] This value is the highest among oxide-based thermoelectric materials ever reported as a "reliable value". In this presentation, we show that the ZT increases up to 0.2 at 200 °C in air.

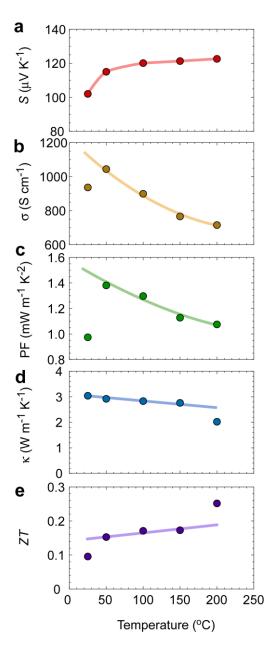

We fabricated $Ba_{1/3}CoO_2$ epitaxial films on sapphire or YSZ substrate by the reactive solid phase epitaxy^[2] followed by the ion exchange method^[1]. Note that the crystal structure of $Ba_{1/3}CoO_2$ is composed of CoO_2 and Ba layers alternately stacked along the *c*-axis. The thermoelectric properties were measure parallel to the CoO_2 layer.

Figure summarizes the thermoelectric properties of the resultant $Ba_{1/3}CoO_2$ epitaxial film at several temperatures in air. The thermopower (**Fig. a**) slightly increased and the electrical conductivity (**Fig. b**) gradually decreased with increasing temperature. We observed hydrated phase disappeared when the film was heated at 100 °C. We guess that the increase of the electrical conductivity (RT – 50 °C) is due to the decomposition of the hydrated phase. The resultant power factor gradually decreased with temperature (**Fig. c**). The thermal conductivity parallel to the CoO₂ layer was extracted from the thermal conductivity of *c*-axis oriented and *c*-axis inclined film. The thermal conductivity slightly decreased with temperature (**Fig. d**). The resultant *ZT* reached 0.2 at 200 °C (**Fig. e**).

In addition, we have clarified that $Ba_{1/3}CoO_2$ epitaxial films show excellent thermal stability at high temperature (800 °C) in air. The present result clearly indicates that $Ba_{1/3}CoO_2$ shows rather large *ZT* at high temperature in air.

References

[1] Y. Takashima *et al.*, *J. Mater. Chem. A* (2020). (DOI: 10.1039/D0TA07565E)
[2] H. Ohta *et al.*, *Cryst. Growth Des.* 5, 25 (2005).

Figure Thermoelectric properties of the Ba_{1/3}CoO₂ epitaxial film at several temperatures. (a) Thermopower, *S*, (b) electrical conductivity, σ , (c) power factor, PF, (d) thermal conductivity, κ , (e) *ZT*