
Oriented Growth of Ferromagnetic Semiconductor Cobalt-doped Titanium Dioxide Thin Film on Glass with Titanium Dioxide Buffer Layer Tohoku Univ.¹, [°]Jiyang Huang, Daichi Oka, Tomoteru Fukumura E-mail: huang.jiyang.q6@dc.tohoku.ac.jp

Anatase $Ti_{1-x}Co_xO_2$ is a room-temperature ferromagnetic semiconductor.^[1] So far, most of the previous studies have reported $Ti_{1-x}Co_xO_2$ epitaxial thin films on single crystal substrates, hampering its practical uses. In this study, we demonstrate synthesis of oriented anatase $Ti_{0.95}Co_{0.05}O_2$ thin films on TiO_2 -buffered glass substrates.

Pulsed laser deposition was used to deposit $Ti_{0.95}Co_{0.05}O_2$ and TiO_2 thin films. 12-nm thick TiO_2 buffer layer was firstly deposited on alkaline-free glass at room temperature and an oxygen partial pressure (P_{O2}) of 3.00×10^{-3} Torr, followed by *in-situ* annealing at 600 °C to crystallize the buffer layer. The $Ti_{0.95}Co_{0.05}O_2$ main layer was then deposited on the TiO₂ buffer layer at 600 °C and $P_{O2} = 1.00 \times 10^{-6}$ Torr.

Figure 1 shows X-ray diffraction θ – 2θ patterns for Ti_{0.95}Co_{0.05}O₂ thin films deposited on glass with and without the TiO₂ buffer layer. While the latter did not show any diffraction peak, the former showed clear 101 peak of anatase-type TiO₂ phase, indicating (101) oriented crystallization promoted by the TiO₂ buffer layer. Large grains with lateral size of about 30 µm were observed in the film by polarized optical microscope. The TiO₂ buffered Ti_{0.95}Co_{0.05}O₂ thin film showed a metallic electrical conduction above 100 K, indicating electron doping by oxygen vacancy (Figure 2). The resistivity, mobility, and carrier density at 300 K were $6.76 \times 10^{-2} \Omega$ cm, $5.13 \text{ cm}^2 \text{V}^{-1}\text{s}^{-1}$, and $1.80 \times 10^{19} \text{ cm}^{-3}$, respectively, being comparable to those of a Ti_{0.95}Co_{0.05}O₂ epitaxial thin film on single crystal substrate.^[2] Anomalous Hall effect measurement at 300 K showed a magnetic hysteresis, confirming room temperature ferromagnetism of the Ti_{0.95}Co_{0.05}O₂ thin film.

[1] Y. Yamada et al., Science 332, 1065 (2011). [2] Y. Yamada et al., Appl. Phys. Lett. 99, 242502 (2011).

Figure 1. X-ray diffraction θ -2 θ patterns for Ti_{0.95}Co_{0.05}O₂ thin films on glass with and without the TiO₂ buffer layer.

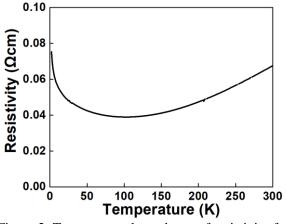


Figure 2. Temperature dependence of resistivity for $Ti_{0.95}Co_{0.05}O_2$ thin films on TiO_2 buffered glass at 300 K.