グラフェン/h-BN モアレ超格子における電子の軌道角運動量の観測

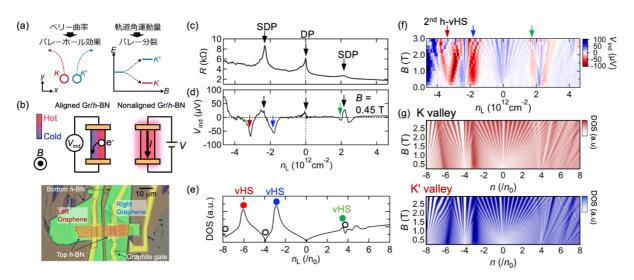
Emergence of orbital angular moment in aligned graphene/h-BN moiré superlattice

東大生研¹, ニューヨーク大学上海校², 物材機構³, 大阪大理⁴, CREST-JST⁵

[○]守谷 頼¹, 木下 圭¹, J.A.Crosse², 渡邊 賢司³, 谷口 尚^{3,1}

增渕 覚¹, Pilkyung Moon², 越野 幹人⁴, 町田 友樹 ^{1,5}

IIS Univ. Tokyo¹, NYU Shanghai², NIMS³, Osaka Univ.⁴, CREST-JST⁵,


°Rai Moriya¹, Kei Kinoshita¹, J. A. Crosse², Kenji Watanabe³, Takashi Taniguchi^{3,1}

Satoru Masubuchi¹, Pilkyung Moon², Mikito Koshino⁴, Tomoki Machida^{1,5}

E-mail: moriyar@iis.u-tokyo.ac.jp

六方晶窒化ホウ素 (h-BN)基板上のグラフェンはモアレ超格子ポテンシャルが発生しさらに h-BN の影響により反転非対称となる。反転非対称なグラフェンにおいては図 a に示すようなベリー曲率や軌道角運動量が発現すると予測されていた。このうち、軌道角運動量は磁場中でグラフェンの K と K'バレー間のエネルギー分裂を起こすが(図 a)、実験が未報告であった。本研究では熱起電力測定によりグラフェン/h-BN の軌道角運動量の観測を行なった。2つのグラフェン/h-BN 素子を10μm離して配置し(図 b)、一方をジュール熱による熱源として用い、他方のグラフェン/h-BN に発生する熱起電力を低温・磁場下で測定した。グラフェンの抵抗のキャリア密度依存性(図 c)、測定された熱起電力(図 d)、グラフェン/h-BN の状態密度(DOS)の計算結果(図 e)を比較すると、グラフェンの Dirac 点(DP)と副 Dirac 点(SDP)に加え、ファン・ホーベ特異点(vHS)にて熱起電力の増大が観測された。これは、熱起電力は dodE に比例し(oは伝導度)、全てのバンド内特異点の挙動を検出できる為である。熱起電力の磁場依存性(図 f)は正孔側2番目の vHS 点(2nd h-vHS)において、特徴的な分裂を示した。有効連続体理論により計算した DOS の磁場依存性と比較した結果(図 g)、2nd h-vHS 点では磁場による K と K'バレーの分裂(有効 g 因子~130 相当)の存在が明らかになった[1]。これは 2nd h-vHS 点が大きな軌道角運動量を持つことを示している。

[1] R. Moriya et al., Nature Communications 11, 5380 (2020).

