Local Fabrication of Nanowires with High Aspect-Ratios using a Diffusion Mixing Reaction System for Temperature Sensing

Sifeng Mao¹, (P) Haifeng Lin¹, Nahoko Kasai¹, Shungo Kato¹, Hizuru Nakajima¹ Tokyo Metropolitan University, ¹

E-mail: maosifeng@tmu.ac.jp

Nanofabrication has greatly promoted the miniaturization and integration of devices, and has led to extensive research in this area. Benefiting from the large surface-to-volume ratio of nanostructures, nanostructured sensors have been utilized for the highly sensitive and specific detection.

We developed a novel approach for selective fabrication of conductive nano-wires on a solid surface via diffusion mixing reaction system formed by a chemical pen.^{1,2} The nanoscale-mixing region was achieved by appropriately adjusting the viscosity of the solution and other parameters with the aid of dyes functioned as a flow boundary indicator. Under the optimal parameters, high aspect ratio silver nanowires (aspect ratio \approx 1800) were obtained.

The theoretical value of the temperature coefficient of resistance (TCR) for silver was 0.0038 Ω /°C. A single silver wire temperature sensor with 7-fold increase in temperature coefficient resistance (0.0261 Ω /°C) was fabricated to show the advantages of the chemical pen in the fabrication of nanowire sensors.³

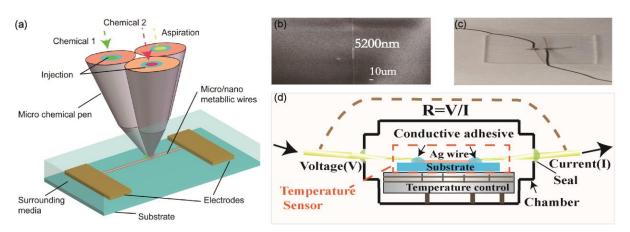


Figure 1. Single nanowire temperature sensor. (a) Scheme of the nanowire fabrication. (b) SEM image of the fabricated nanowire. (c) Photo of the temperature sensor. (d) Illustration of temperature sensing.

References

- Mao, S.; Zhang, Y.; Zhang, W.; Zeng, H.; Nakajima, H.; Lin, J.-M.*; Uchiyama, K*. *Chemphyschem* 2017, *18*, 2357-2363.
- [2] Zhang, Y.; Mao, S.*; Suzuki, Y.; Tanaka, Y.; Kawaguchi, M.; Zhang, W.; Zeng, H.; Nakajima, H.;
 Yang, M.; Uchiyama, K*. *Chem. Commun.* 2018, 54, 719-722.
- [3] Lin, H.; Mao, S.; Zeng, H.; Zhang, Y.; Kawaguchi, M.; Tanaka, Y.; Lin, J.-M.*; Uchiyama, K.*. Anal. Chem. 2019, 91, 7346-7352.