Tunnel magnetoresistance in ultrathin MnGa-based

perpendicular magnetic tunnel junctions utilizing bcc-Co based interlayers

°Kazuya Suzuki^{1,2}, Tomohiro Ichinose¹, Ren Monma^{1,3}, Shigemi Mizukami^{1,2,4},

¹ WPI Advanced Institute for Materials Research, Tohoku University

² Center for Spintronics Research Network (CSRN), Tohoku University

³ Department of Applied Physics, Graduate School of Engineering, Tohoku University

⁴ Center for Science and Innovation in Spintronics (CSIS), ohoku University

E-mail: kazuya.suzuki.d8@tohoku.ac.jp

Tetragonal Mn-based perpendicular magnetic tunnel junctions (p-MTJs) attracts attention for magnetic random access memory and advanced THz devices¹. Past studies of Mn-based p-MTJs have been reported small TMR ratio at room temperature below 32% without magnetic interlayer², and maximum of 60% even if FeCo interlayers were used³. Thus, it is crucial to find new interlayer materials to further enhance the TMR ratio for realizing Mn-based p-MTJs for practical applications. In this study, we focused on bcc-CoMn binary alloy possessing highly spin-polarized $\Delta 1$ band⁴ as new interlayer material for ultrathin MnGa-based p-MTJs⁵, and investigated its TMR properties⁶. The stacking structure of the p-MTJs are MgO(001) substrate/Cr(40)/Co₅₅Ga₄₅(30)/ Mn₆₁Ga₃₉(3)/ Co_xMn_{100-x}(0.8) /Mg(0.4)/MgO(2)/ Fe₆₀Co₂₀B₂₀ (1.2)/Ta(3)/Ru(5) (thickness is in nanometers). After microfabrication using conventional photolithography and Ar ion milling process, the MTJs were annealed at 250 °C in a vacuum furnace. TMR measurements were performed by a PPMS. Figure 1 shows the TMR curves of the MTJs with $Co_{80}Mn_{20}$ interlayer measured at 300 and 10K. The $Co_{80}Mn_{20}$ interlayer shows the TMR ratio up of approximately 85% (209%) at 300 and 10 K. respectively. Meanwhile, the shape of the TMR curve and the significant increase of coercivity indicate that Co₈₀Mn₂₀ interlayer strongly and antiferromagnetically couples with perpendicularly-magnetized MnGa layer. The TMR ratio of 209% is larger than the value expected from Julliere's relation with spin-polarization of fcc-Co and CoFe(B). Thus, this high TMR ratio would originate from coherent tunneling between highly spin-polarized $\angle 1$ bands in bcc-Co (Co-Mn) and CoFe(B) electrodes, even though the Co-Mn interlayer thickness is very small, 0.8 nm.

We would like to thank Y. Kondo for his technical assistance. This work was partially supported by JST CREST (No. JPMJCR17J5).

<u>Reference</u>

[1] S. Mizukami et al. Scripta Materialia 118, 70 (2016)

- [2] J. Jeong et al. Nat. Commun., 7, 10276 (2016).
- [3] Q. L. Ma et al. Phys. Rev. Lett. 112, 157202 (2014).
- [4] K. Kunimatsu et al. Appl. Phys. Express 13, 083007 (2020).
- [5] K. Z. Suzuki et al. Sci. Rep. 6, 30249 (2016).
- [6] K. Z. Suzuki submitted.

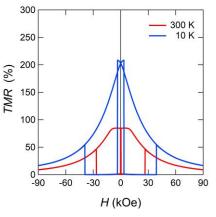


Figure 1 TMR loops the MTJs with $Co_{80}Mn_{20}$

interlayer measured at 300 K and 10 K