Physics and stack engineering of ultra-small magnetic tunnel junctions using shape anisotropy

¹RIEC, Tohoku Univ. ²WPI-AIMR, Tohoku Univ. ³IJL, Lorraine Univ. ⁴CSRN, Tohoku Univ. ⁵CSIS, Tohoku Univ. ⁶CIES, Tohoku Univ.

^O(D)J. Igarashi¹, B. Jinnai², V. Desbuis³, S. Mangin³, S. Fukami^{1,2,4-6}, and H. Ohno^{1,2,4-6}

E-mail: jigarasi@riec.tohoku.ac.jp

Shape-anisotropy magnetic tunnel junction (MTJ) ^[1] is attracting much attention for future-generation spin-transfer torque magnetoresistive random access memory (STT-MRAM) because of its scalability into the X/1X nm regime. Making a cylindrical nanomagnet with its thickness (*t*) larger than its diameter (*D*) allows one to positively combine shape anisotropy and interfacial anisotropy, resulting in a high thermal stability factor $\Delta (\equiv E/k_{\rm B}T$, where *E* is the energy barrier between the two magnetization states, $k_{\rm B}$ is the Boltzmann constant, and *T* is a temperature) even at the X/1X nm regime ^[1,2]. STT switching has also been demonstrated in such small and stable MTJs ^[1]. Understanding the change in *E* at high temperatures is of significant interest from both fundamental and applications points of view. In this study, we investigate the temperature dependence of *E* in the X/1X nm shape-anisotropy MTJs and show designs compatible with applications at high temperatures.

We evaluate Δ at various temperatures up to 191 °C for MTJs with *D* ranging from 5.0 to 11.9 nm by measuring the switching probability using a pulsed magnetic field. We find that the scaling relationship between the temperature dependence of spontaneous magnetization and E (= $\Delta k_{\rm B}T$) for the shape-anisotropy MTJs is well described by a model assuming a dominant contribution of shape anisotropy. Based on the obtained scaling relationship, we also discuss a window of shape-anisotropy MTJ for high-temperature applications below 20 nm ^[3].

In the presentation, we also present our latest results on shape-anistropy MTJs employing a multilayered ferromagnetic structure (Fig. 1), showing notable performance in X-nm regime: (1) stable switching and

high Δ at high temperatures, (2) switching efficiency improvement, and (3) high speed STT switching with a 10-ns pulse below 1 V ^[4].

This work was supported in part by JST-OPERA JPMJOP1611, JSAP KAKENHI JP19K04486 and JP19J12926, Cooperative Research Projects of RIEC, and DIARE of Tohoku University. J.I. acknowledges financial support from GP-Spin of Tohoku University and JST-OPERA.

- [1] K. Watanabe et al., Nature Commun. 9, 663 (2018).
- [2] N. Perrissin et al., Nanoscale 10, 12187 (2018).
- [3] J. Igarashi et al., Appl. Phys. Lett., to be published (2021).
- [4] B. Jinnai et al., IEEE IEDM, 24.6 (2020).

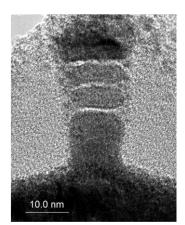


Fig. 1 Cross-sectional TEM image for the shape-anisotropy MTJ employing multilayered ferromagnetic structure.