p-ドリフト層を持つ縦型 2DHG ダイヤモンド MOSFET の高絶縁破壊電圧(>580 V)の達成

Achievement of High Breakdown Voltage (>580 V) in Vertical-Type 2DHG Diamond MOSFET by p-drift layer

早大理工1,早大材研2

°(B)太田 康介¹, 角田 隼¹, 新倉 直弥¹, 森下 葵¹, 平岩 篤¹, 川原田 洋¹,² Waseda Univ.¹, Kagami Memorial Research Institute for Materials Science and Technology.² °(B)Kosuke Ota¹, Jun Tsunoda¹, Naoya Niikura¹, Aoi Morishita¹, Atsushi Hiraiwa¹, Hiroshi Kawarada^{1,2}

E-mail: ok0723@suou.waseda.jp

高出力·高速スイッチング相補型インバータの実現 に向けてn型に対応する集積化に適した縦型pチャ ネルパワーFET の開発が急務である。我々は C-H 終 端構造及び高温 ALD-Al₂O₃^[1]により面方位に依存せ ず誘起される 2 次元正孔ガス(2DHG)を用いた縦型 2DHG ダイヤモンド MOSFET を報告^{[1]-[3]}し、高い ドレイン電流密度(> 20 kA/cm^{2 [4]}, 710 mA/mm^[3])と 縦型 n-FETs の SiC や GaN に匹敵するオン抵抗(2.5 $m\Omega \cdot cm^2)^{[4]}$ を実現してきた。本研究では、p-ドリフト 層を備えた(100)縦型 2DHG ダイヤモンド MOSFET を初めて作製し、現在報告されている縦型ダイヤモ ンド MOSFET の中で最大の絶縁破壊電圧($V_{\rm B}$: -582 V)を達成したため報告する。Fig.1 に作製した縦型 デバイスの断面図を示す。p-ドリフト層([B]: ~8× 10^{17} cm⁻³, [N]: ~1× 10^{16} cm⁻³)は、MPCVD 法を用 いて計 4 μm 成膜した。本デバイス寸法として、ソ ース・ゲート間(L_{SG})は 3 μ m、ゲート・トレンチ間(L_{GT}) は $4 \mu m$ 、ゲート・ドレイン間距離(L_{GD})は $10 \mu m$ 、ソ ース・ドレイン間(L_{SD})は $17 \mu m$ 、ゲート長(L_G)は $4 \mu m$ となった。またデバイスアクティブ領域はソース・ ソース間距離(L_{SS} : 30 μ m)とゲート幅(W_G : 25 μ m)の 積で定義し、 7.5×10^{-6} cm⁻² となった。Fig. 2 の I_D - V_{DS} 特性より V_{DS} : -50 V、 V_{GS} : -20 V にてゲート幅で規格 化した最大ドレイン電流密度(I_{D,max})は 210 mA/mm となり、アクティブ領域規格では $I_{D,max}$: 1400 A/cm² 及びオン抵抗は R_{on} : 23 m Ω ·cm² となった。本研究で 得られたドレイン電流密度は p-ドリフト層を持た ないドリフト層のない平面で同寸法の縦型デバイ スと同等の値である^[1]。また、Fig.3 に示す通り、高 い絶縁破壊電圧(VB: -582 V)を達成し、平均電界強度 は 0.6 MV/cm を確認した。この値は p-ドリフト層を 持たない同寸法デバイスの絶縁破壊電圧(VB: -359 V)^[1]よりも遥かに高く、現在報告されている縦型ダ イヤモンド FET で最大の値となる。今後、p⁻ドリフ ト層の窒素濃度及びボロン濃度を最適化し、ドリフ ト層を 10 μm 程度増やすことで、更なる絶縁破壊特 性の向上が可能である。また、本デバイス構造にト レンチゲート構造[4]を導入し、低オン抵抗化を実現 させることで、高耐圧かつ低オン抵抗なp型パワー トレンチダイヤモンド MOSFET が実現可能となる。

[謝辞]本研究は、文部科学省ナノテクノロジープラッ トフォーム事業(NIMS 微細加工プラットフォーム)の 支援を得た。

[1] N. Oi, H Kawarada et al., *Sci. Rep.*, vol. 8, Art. No. 10660. (2018) [2] M. Iwataki, H. Kawarada et al., *IEEE.EDL*, 41, p111-114. (2019) [3] J. Tsunoda, H. Kawarada et al., *Carbon*, in press. (2021) [4] J. Tsunoda, H. Kawarada et al., *IEEE EDL*, submitted. (2020)

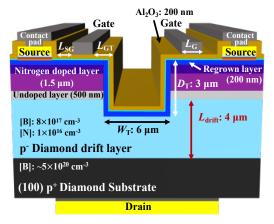


Fig.1 Schematic cross-sectional view of a (100) verticaltype 2DHG diamond MOSFET with p-diamond drift layer.

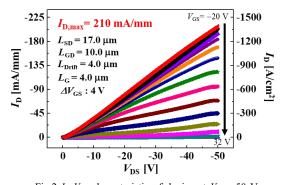


Fig.2 I_D - V_{DS} characteristic of device at V_{DS} : -50 V and $V_{\rm GS}$ is varied from -20 V 32 V in steps of 4V.

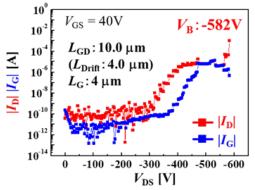


Fig.3 Breakdown characteristics of device.