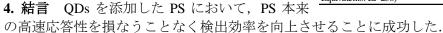
ペロブスカイト量子ドットを含有する高計数率 X 線計測用プラスチック シンチレータの開発


Development of perovskite quantum dot-loaded plastic scintillator for high counting rate X-ray measurements

東北大院工¹, 高エネルギー加速器研究機構², 奈良先端大³ [○]間木ありさ¹, 越水正典¹, 佐藤 敦史¹, 藤本裕¹, 岸本俊二², 柳田健之³, 浅井圭介¹

Tohoku Univ. ¹, KEK ², NAIST³ [°]Arisa Magi¹, Masanori Koshimizu¹, Atsushi Sato¹, Yutaka Fujimoto¹, Shunji Kishimoto², Takayuki Yanagida³, Keisuke Asai¹

E-mail: arisa.magi.qi@dc.tohoku.ac.jp

- 1. 緒言 高エネルギー光子に対し、大発光量と高速応答性を兼備する検出器の実現に向けて、重金属添加プラスチックシンチレータ(PS)の研究が進められている。重金属添加は、PS の検出効率を向上させるものの、一方で発光量を低下させるというトレードオフを生ぜしめる。この難点を克服すべく新規材料の探索を進める中で、我々は、重金属化合物としてペロブスカイト量子ドット(QDs)に着目するに至った。QDs は高い量子収率を有し、発光中心として機能する。本研究では、CsPb(Cl/Br) $_3$ (QD-P-450 および 480))と CsPbBr $_3$ (QD-P-510) を含む 3 種類の PS を作製し、その X 線検出特性を分析した。
- 2. 実験方法 THF にポリスチレンを溶解させ、そこに QDs (QD-P-450, QD-P-480, あるいは QD-P-510)を対ポリスチレンで 5wt%添加し、これを母材とした. 次に、蛍光体としての b-PBD を母材に対し $0.50 \text{ mol}\%添加し分散させた. これを 35℃で乾燥させ、<math>3 \text{ mm} \times 3 \text{ mm}$ 角に成型した. これを試料として、X 線励起ラジオルミネッセンス測定(XRL)を行った. また、試料を搭載した検出器の 67.4 keV の X 線 (KEK-PF, BL-14A)に対する波高スペクトルおよび時間プロファイルを測定した. 比較試料として、市販の重金属含有 PS である EJ-256 (ϕ 5mm, 2 mm 厚)を採用した.
- Fig.1 に, XRL スペクトルを示す. 3. 実験結果 470, 500 および 530 nm においてピークが観測さ れた. 全試料において、QDs 本来の発光ピークよ りも長波長側にピークが現出した. これは, 自己 吸収がもたらした長波長シフトによるものと考 えられる. Fig.2 に時間プロファイル(67.4 keV X 線)を示す. 全試料において, 半値全幅がサブナ ノ秒であることから、PS 本来の高速応答性が維 持されたことが分かる. Table 1 に、波高スペク トル (67.4 keV X 線) の結果を用て算出した検出 効率を示す. 作製試料の厚さ 1 mm あたりの検出 効率は, EJ-256 での値を凌駕した. また, ²⁴¹Am からの γ線 (59.5 keV) 照射により得られた波高 スペクトル結果における,各試料の波高値を示す. QDs 添加試料における波高値はいずれも市販品 での値の 1/3 程度であった.

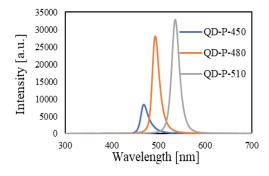


Fig. 1. XRL スペクトル.

ODP450
ODP480
ODP510
OD

Fig.2 時間プロファイル (67.4 keV).

Table 1. 検出効率および光電吸収ピークの 位置する独真値

	世直りる仮同他.	
	光電吸収ピークが	厚さ1 mm当たりの
	位置する波高値	検出効率 [%]
QDP450	125	1.7
QDP480	140	1.7
QDP510	120	1.4
NE-142 (Commercial	380	1.3
Equivalents: EJ-256)	300	1.5