Cat-CVD で堆積した単層および積層非晶質 Si 膜を有する SHJ 太陽電池の発電特性

Characteristics of Si heterojunction solar cells with single and stacked amorphous Si films deposited by Cat-CVD

北陸先端大 °(M2)寺門 裕樹, Huynh Thi Cam Tu, 大平 圭介 JAIST, °Yuki Terakado, Huynh Thi Cam Tu, Keisuke Ohdaira E-mail: buo5056@jaist.ac.jp

【緒言】Siへテロ接合(SHJ)太陽電池において、 ノンドープ非晶質 Si (i-a-Si)による結晶 Si (c-Si) 表面のパッシベーションが変換効率に大きな 影響を与える。特に、i-a-Si 成膜中に起きるエ ピタキシャル成長 (epi 成長) が、a-Si/c-Si 界面 の品質劣化の原因となる[1]。これまで我々は、 触媒化学気相堆積(Cat-CVD)により、c-Si 表面 に低温で薄い epi 成長抑制の i-a-Si 膜を堆積後、 高温で高品質の i-a-Si 膜を堆積させる積層構造 を採用することにより高パッシベーション性 能が実現できることを報告した[2]。本研究で は、太陽電池の性能に対する i-a-Si 積層膜の単 層膜と比較した有効性を確認するため、SHJ 太 陽電池を作製し特性を評価したので報告する。

【実験】鏡面研磨、厚さ 260-300 µm、抵抗率

1-5 Ω·cm の n 型(100)FZ c-Si を基板として用いた。直径 6 インチの Si ウェハを 5 cm 角に劈開し、5% HF 中に 30 秒間浸漬し自然酸化膜を除去した後、4wt%の H₂O₂に 30 秒浸漬することで c-Si 表面に極薄酸化膜を形成した。その後、Cat-CVD 法で、積層膜セルでは、1 層目 (epi 成長抑止層) は基板温度 100 °C、2 層目(高品質層)は 285 °C で、総膜厚~10 nm となるよう i-a-Si を堆積した[3]。 単層膜セルでは基板温度100 °C で膜厚~10 nm の i-a-Si を堆積した。次にn-, p-a-Si をそれぞれ11 nm 堆積した後、マグネトロンスパッタリング法でITO層を80 nm程度成膜し、櫛状のAg電極を真空蒸着装置で形成した。5 cm 角の試料内に1.1 cm のセルを

9 つ作製し、左上からセル名を A から I とした。電流密度-電圧(J-V)測定を 1-sun の光照射下で行い性能を評価した。

【結果・考察】Table 1 に単層膜セルおよび積層膜セルの発電特性を示す。積層膜セルの開放電圧(V_{oc})は単層膜セルと比較し、概ね高いことが分かった。これは低温で1層目を堆積することにより、epi 成長が抑制され、高いパッシベーション性能が得られたためだと考える。FFは、積層膜セルの方が単層膜セルより高い値を示しているが、これは、i-a-Si の膜厚制御が不十分であったためと考える。この結果より、SHJ 太陽電池のパッシベーション性能向上に、積層膜が有用であることが確認できた。また、各層の膜厚制御により、積層膜の有用性のさらなる向上が可能であると考える。

Table 1 Characteristics of SHJ solar cells with single and stacked i-a-Si layers.

	Single layer cell				Stacked layer cell			
	$J_{\rm sc}$ (mA/cm ²)	$V_{oc}(V)$	FF	η (%)	$J_{\rm sc}~({\rm mA/cm^2})$	$V_{oc}(V)$	FF	η (%)
A	30.16	0.660	0.69	14.3	31.25	0.675	0.72	15.2
В	27.98	0.666	0.68	12.8	29.11	0.650	0.72	13.6
C	31.24	0.683	0.68	14.6	29.01	0.671	0.75	14.7
D	24.50	0.663	0.73	11.9	27.40	0.663	0.70	12.8
E	23.20	0.671	0.75	11.8	24.30	0.680	0.79	13.2
F	26.81	0.674	0.72	13.1	26.16	0.676	0.76	13.6
G	27.53	0.641	0.68	12.1	28.92	0.672	0.70	13.8
Н	25.73	0.664	0.71	12.2	25.79	0.668	0.71	12.8
I	29.28	0.673	0.62	12.2	27.35	0.644	0.68	12.0

【参考文献】

- [1] T. H. Wang et al., Thin Solid Films. **501**, 284 (2006).
- [2] 寺門 他 第 81 回応用物理学会秋季学術講演会, 11p-Z23-19, 2020.
- [3] 寺門 他 第 67 回応用物理学会春季学術講演会講演予稿集, 2020.