酸化物イオン伝導体 YSZ を用いた SrCoO2.5 薄膜の電気化学的酸化・還元

Electrochemical Redox reaction of SrCoO_{2.5} films using YSZ oxide ion conductor 北大院情報¹, 釜山大物理², 京大元素³, 東大総研⁴, 北大電子研⁵ ⁰楊 倩¹, イ ジュンヤク², ジン ヒョンジン², 魏 家科³, 馮 斌⁴, 幾原 雄一^{3,4}, ジョ ヘジュン^{1,5}, 太田 裕道^{1,5} IST-Hokkaido Univ.¹, Pusan Nat'l Univ.², Kyoto Univ.³, Univ. Tokyo⁴, RIES-Hokkaido Univ.⁵,

°(D) Q. Yang¹, J. Lee², H. Jeen², J. Wei³, B. Feng⁴, Y. Ikuhara^{3,4}, H.J. Cho^{1,5}, and H. Ohta^{1,5}

E-mail: yangqian@eis.hokudai.ac.jp

SrCoO_x shows kinds of properties depending on the oxygen content *x*; Brownmillerite (BM) SrCoO_{2.5} (Co³⁺) is brown colored antiferromagnetic insulator and perovskite (PV) SrCoO_{3- δ} (Co⁴⁺) is black colored ferromagnetic metal. Protonated BM HSrCoO_{2.5} (Co²⁺) is colorless transparent weak ferromagnetic insulator. There is no report on the reduced SrCoO₂ (Co²⁺). In order to obtain SrCoO₂ and clarify the properties, we used an oxide ion conductor YSZ as the solid electrolyte^[11]. Here we report first observation of SrCoO₂.

We fabricated epitaxial films of SrCoO_{2.5} on 10%-Gd-doped CeO₂ buffered (001) YSZ single crystal substrate by pulsed laser deposition technique. The electrochemical Redox reaction of the resultant films was performed by applying current under ± 10 V at 300 °C in air.

Figure shows the out-of-plane XRD patterns of the resultant $SrCoO_x$ films. Only intense diffraction peaks of 00*l* BM $SrCoO_{2.5}$ are observed together with 00*l* GDC and 00*l* YSZ in the as-grown sample. After the electrochemical oxidation, superlattice peaks of 002, 006, and 0010 BM $SrCoO_{2.5}$ disappeared and transformed into PV $SrCoO_{3-\delta}$ completely. The film color changed from brown to black. On the other hand, after the electrochemical reducing treatment,

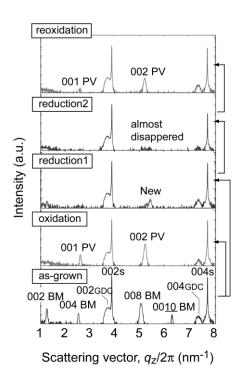


Figure | Out-of-plane XRD patterns of the resultant $SrCoO_x$ films.

superlattice peaks of 002, 006, and 0010 BM SrCoO_{2.5} disappeared and new diffraction peak appeared around $q_z/2\pi \sim 5.3 \text{ nm}^{-1}$. The film was colorless transparent and electrically insulator. After applying the positive voltage continuously, the new peak almost disappeared. Interestingly, when we applied a current under negative voltage to the reduced sample, intense diffraction peaks of PV SrCoO_{3- δ} appeared again that demonstrate reversible electrochemical redox reaction of SrCoO_x films.

In order to clarify the valence state of Co ion, we performed the X-ray absorption spectroscopy measurements and confirmed that the oxidation state of Co ion in the reduced sample is +2, clearly indicating that SrCoO2 was successfully obtained for the first time. The present results would be useful to develop memory devices utilizing the multivalent Co ions in $SrCoO_x$ with rich functionalities.

Reference [1] Q. Yang, H. Jeen, H. Ohta et al., Adv. Mater. Interfaces 6, 1901260 (2019).