Characterization of KNbO₃ Piezoelectric Thin Films by Hydrothermal Method

Josai Univ.¹, Univ. of Yangon², ^oMay Phyo Paing^{1,2}, Khin Phyu Phyu Sin^{1,2}, Thithi Lay¹ E-mail: mayphyopaing.mayphyop@gmail.com

Abstract

Piezoelectric thin films with perovskite structure are in focus as lead- free piezoelectric material to reduce the environmental damage and hazard. In this research, KNbO₃ films were synthesized on single crystal LiTaO₃ substrate by hydrothermal method at 240°C at different reaction time. Linear two-dimensional finite element method (2D-FEM) was used to estimate the values of electromechanical coupling coefficient (k_t) with different film thickness.

Figure 1 shows the XRD results of crystal structures of the obtained films at 3hr, 4hr and 5hr reaction time. Diffraction peaks correspond respectively to the (100), (111), (200) and (222) planes of an orthorhombic structure of standard KNbO₃. When KOH value changed from 25ml to 40ml at 5hr results decreased in substrate LiTaO₃ peak intensity compare to 3 &4 hr. Figure 2 shows simulation results of electromechanical coupling coefficient k_{31} according to KNbO₃ film thickness. K_{31} increase with increasing film thickness and at 25 μ m, k_{31} =0.169 (16.9%). Simulation results of PZT at thickness 25 μ m, k_{31} =0.107 (10.7%). Simulation results show KNbO₃ can be a good candidate to replace PZT by controlling film thickness.

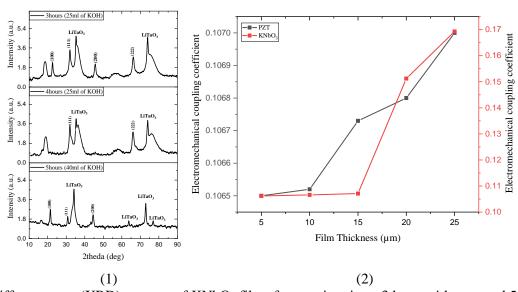


Fig.1. X-ray diffractometer (XRD) patterns of KNbO₃ films for reaction times 3 hours, 4 hours, and 5 hours. Fig.2. Film thickness dependency of k_{31} estimated by FEMTET software