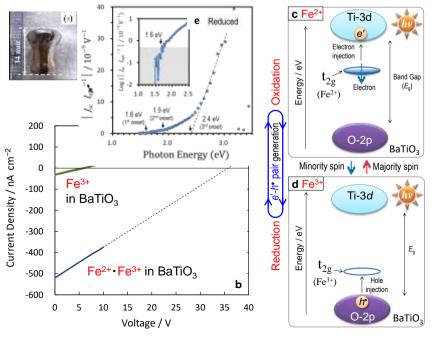
強誘電体の可視光起電力効果 –光誘起逐次酸化還元– Visible-light ferrophotovoltaics — Light-induced successive redox reactions —


熊本大学¹ ^O野口 祐二¹

Kumamoto Univ.¹

E-mail: ynoguchi@cs.kumamoto-u.ac.jp

In this presentation, I report *successive-redox* mediated ferrophotovoltaics, where two gap states enable $e'-h^{\bullet}$ pair formation in a wide photon-energy (*hv*) range. Our approach is based on acceptor and donor states that act as scaffolds for generating photoinduced carriers. A single transition-metal dopant with two different valence states in the ground state introduces these gap states and thereby provides successive redox cycles under illumination. This is, in principle, capable of activating a PV response at small *hv* without being restricted by material bandgap. Our experimental and theoretical study on a prototypical ferroelectric BaTiO₃ demonstrates that the 3d orbitals of iron derive donor and acceptor states in the Fe²⁺-Fe³⁺ coexisting state and also that $e'-h^{\bullet}$ pairs injected by two sequential Fe³⁺/Fe²⁺ reactions deliver a robust PV effect not only under visible light but also at *hv* greater than *E*_g.

Figure 1**b** indicates the current density (*J*) vs. bias voltage (*V*) properties under light with hv = 3.1 eV of BaTiO₃ single crystals in the single domain state. The oxidized sample (Fe³⁺) exhibits a short-circuit *J* (*J*_{sc}) of -32 nA/cm^2 and an open-circuit voltage (*V*_{oc}) of 5.9 V. I note that the reduced sample (Fe²⁺-Fe³⁺) show a markedly large response: a *J*_{sc} of -520 nA/cm^2 is over one order of magnitude larger and an *V*_{oc} of 35 V is approximately six times as large as that of the oxidized one. Figure 1**e** shows the normalized current *I* / I_{opt} as a function of photon energy (*hv*). The reduced sample (Fe²⁺-Fe³⁺) exhibits a much higher *I* / I_{opt} in a wide *hv* range. The first onset is estimated at ~ 1.6 eV, which agrees well with 1.5 eV of the difference of the CBM – Fe-3d_z2 for Fe²⁺-*V*₀^{••}. The second onset was found at ~ 2.0 eV, which is in quantitative agreement with the difference between the VBM and the empty states for Fe³⁺ and Fe³⁺-*V*₀^{••}. I found that the third onset appears at ~ 2.3 eV, which accords with the gap for the CBM – the filled Fe-3d_x2_{-y}2 state for Fe²⁺-*V*₀^{••}.

1. Noguchi, Y., Taniguchi, Y., Inoue, R. & Miyayama, M. Nat. Commun. 11, 1–10 (2020).

Figure Successive-redox 1 mediated photovoltaic properties Fe-doped BaTiO₃ single of crystals (a) in the single domain state. **b** Current voltage properties under light with hv = 3.1 eV of the oxidized sample (Fe^{3+}) and the reduced sample ($Fe^{2+}-Fe^{3+}$). In the $Fe^{2+}-Fe^{3+}$ coexisted state, electron-hole pairs can be generated under visible light through **c** electron injection induced from the electron-filled Fe^{2+} (d_z2) state to the conduction band (Ti-3d) associated with the iron oxidation (Fe²⁺ \rightarrow Fe³⁺) and d hole injection from the unoccupied Fe^{3+} states (e.g., d_{xy}) to the valence band (O-2p) along with the iron reduction (Fe³⁺ \rightarrow Fe^{2+}). These successive-redox could deliver reactions visible-light photovoltaic effect.