FeO_y/SrTiO₃界面における二次元キャリアガスの電気的ゲート制御

Electrical gate control of the two-dimensional carrier gas at the FeO_y/SrTiO₃ interface

Dept. of EEIS, The Univ. of Tokyo¹, IEI, The Univ. of Tokyo², PRESTO, JST³, CSRN, The Univ. of Tokyo⁴

°(B)Theodorus Jonathan Wijaya¹, Le Duc Anh^{1,2,3}, Shingo Kaneta-Takada¹,

Masaaki Tanaka^{1,4}, and Shinobu Ohya^{1,2,4}

E-mail: theodorusjw@cryst.t.u-tokyo.ac.jp

The *n*-type two-dimensional (2D) electron gas (2DEG) at the LaAlO₃/SrTiO₃ (STO) interface [1] has been attracting much attention due to its high-mobility and rich physics. Yet, its complementary system, the *p*-type 2D hole gas (2DHG), remains largely unknown and difficult to create [2]. In our previous work [3], by depositing a sub-nm Fe layer on STO substrates, we demonstrated the realization of both 2DHG and 2DEG with ultrahigh mobilities (up to 24000 cm²/Vs for hole carriers) at the STO interface, whose carrier type can be controlled by the Fe thickness. This discovery potentially provides a universal platform for oxide-based electronics, but the properties and formation mechanism of the 2D carrier gas remain elusive.

In this work, using a back-gate field-effect transistor configuration, we demonstrate that the carrier type and mobility of these 2D carrier gases can be effectively controlled by gate voltage (V_G) application. The samples were made by depositing Al (1 nm)/Fe (0.075–0.4 nm) on STO substrates at 50°C using molecular beam epitaxy (MBE) [Fig. 1(a)]. The samples were then patterned into $100 \times 400 \ \mu\text{m}^2$ Hall bars, and electrodes for transport measurements were formed by sputtering an Al layer and a lift-off process [Fig. 1(b)]. In all samples, the carrier type is transformed from *n*-type to *p*-type when V_G is swept from –12 to 25 V [Fig. 1(c)], where the threshold gate voltage V_{G-TH} of the carrier-type switching varies by samples. The non-linear Hall effect results imply a co-existence of both electrons and holes in the 2D gas. By fitting the two-carrier model to the observed Hall resistance curves, we successfully estimated the density and mobility of the carriers as a function of V_G . Our results provide insights into the complicated band structure and the formation mechanism of 2DHG at the FeO₃/STO interfaces, which will be discussed in detail in the meeting.

This study was supported by Grants-in-Aid Scientific Research, the CREST of JST (JPMJCR1777), and Spintronics Research Network of Japan.

References [1] A. Ohtomo and H. Y. Hwang, Nature **427**, 423 (2004). [2] H. Lee *et al.*, Nat. Mater. **17**, 231 (2018). [3] L. D. Anh *et al.*, Adv. Mater. **32**, 1906003 (2020).

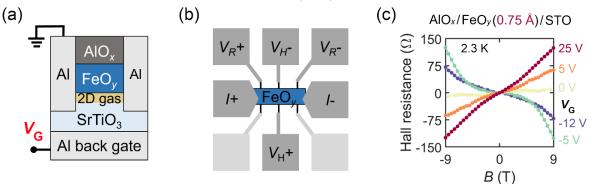


Fig. 1. (a) Schematic cross-sectional structure of the $AlO_x/FeO_y/STO$ samples with an Al back-gate and contact pads. (b) Top view of the devices for Hall measurements. (c) Hall resistance vs magnetic field (*B*) measured at 2.3 K. By changing the gate voltage V_G on $AlO_x/FeO_y(0.75 \text{ Å})/STO$ from negative to positive, the conduction type changes from *n*-type to *p*-type.