Characterization of γ-Al₂O₃/β-Ga₂O₃ interface with photo-assisted capacitance-voltage method

Tokyo Tech., Dept. Chem. Sci. Eng.¹, MCES²

^oNan Zhang¹, Takumi Saito¹, Kaisei Kamei¹, Takuto Soma¹, Akira Ohtomo^{1,2}

E-mail: zhang.n.ab@m.titech.ac.jp

[Introduction] β -Ga₂O₃ is promising for next-generation power devices such as metal-oxidesemiconductor field-effect transistors (MOSFETs). In a MOSFET, trap states residing at interface between a channel and adjacent layers influence the performance and durability. According to the previous studies [1, 2], γ -Al₂O₃ is prospected as a gate oxide for β -Ga₂O₃-based MOSFET with good performance. Here we report on the electrical characterization of γ -Al₂O₃/ β -Ga₂O₃ interface with photo-assisted capacitance-voltage (*C-V*) method for accurate estimation of interface trap density (*D*_{it}) [3].

[Experiment] γ -Al₂O₃ epitaxial films were grown on unintentionally doped β -Ga₂O₃ (010) wafers by using oxygen-radical-assisted pulsed-laser deposition (PLD) at 500 °C. Then MOS capacitors were fabricated with semitransparent Au top electrodes and ITO bottom ohmic contacts. The current density-voltage (*J-V*) and the photo-assisted *C-V* measurements were performed at RT with using a 300 W Xe lamp.

[Results and discussion] Figure 1 is the *J-V* curve in dark exhibiting a high breakdown electric field more than 10 MV/cm. Figure 2 shows the results of photo-assisted *C-V* measurement. There is a ledge in the curve after UV excitation. This ledge is attributed to retrapping of photoexcited electrons as the Fermi level reaches the deepest interface state. We calculated D_{it} from the voltage difference (ΔV) with respect to shifted dark curve (see Figs. 2 and 3). The peak at -0.5 eV corresponds to holes accumulated at the valence band offset. The average D_{it} after subtracting this peak is 2.0×10^{12} cm⁻² eV⁻¹, which is smaller than that of amorphous Al₂O₃/ β -Ga₂O₃ interface (5.5×10¹² cm⁻² eV⁻¹) estimated by the same method [4].

[1] M. Hattori et al., Jpn. J. Appl. Phys. 55, 1202B6 (2016).

[3] R. Yeluri et al., J. Appl. Phys. 114, 083718 (2013)

[4] Z. A. Jian et al., Appl. Phys. Lett. 116, 242105 (2020).

 $D_{\rm it}(10^{12}~{\rm cm^{-2}eV^{-2}})$

1

[2] T. Kamimura et al., Jpn. J. Appl. Phys. 55, 1202B58 (2016).

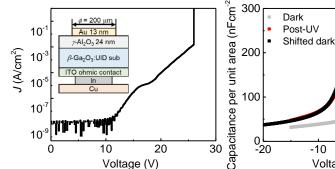


Fig. 1 *J-V* curve for a sample shown in inset.

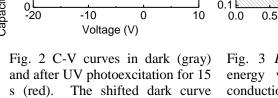


Fig. 3 D_{it} as a function of energy with respect to the conduction band maximum E_c .

 $|E-E_c|$ (eV)

1.0

1.5

2.0

Average D

(black) is also shown for clarity.