# 高感度エミッション顕微鏡による HVPE (001)β型酸化ガリウム SBD の リーク電流の起源の同定一多結晶欠陥

Polycrystalline Defects–Origin of Reverse Leakage Current in HVPE (001)  $\beta$ -Ga<sub>2</sub>O<sub>3</sub>

SBDs Identified by High Sensitive Emission Microscope

## 佐賀大院工<sup>1</sup>, ノベルクリスタルテクノロジー<sup>2</sup>, TDK (株)<sup>3</sup>

<sup>O</sup>(D1)スダーン セイリープ<sup>1</sup>, 佐々木公平<sup>2</sup>, 川崎克己<sup>3</sup>, 平林潤<sup>3</sup>, 倉又朗人<sup>2</sup>, 嘉数 誠<sup>1</sup>

Saga Univ.<sup>1</sup>, Novel Crystal Technology<sup>2</sup>, TDK Corp.<sup>3</sup>

<sup>O</sup>(D1) S. Sdoeung<sup>1</sup>, K. Sasaki<sup>2</sup>, K. Kawasaki<sup>3</sup>, J. Hirabayashi<sup>3</sup>, A. Kuramata<sup>2</sup>, and M. Kasu<sup>1</sup>

E-mail: kasu@cc.saga-u.ac.jp

#### 1. Introduction

β-Ga<sub>2</sub>O<sub>3</sub> has a bandgap of 4.43–4.8 eV, which is wider than that of SiC and GaN; hence, it can be used to develop high-efficient high-power electronic devices. Recently, Sasaki et al. developed 20 A class SBDs with a low on-resistance of 6 mΩ·cm<sup>2</sup>.[1] However, it has been observed that in the SBDs fabricated on a single 2" wafer, some show a higher reverse current and a lower breakdown voltage than their neighbors. Therefore, in this study we investigate the killer defects that are responsible for the reverse leakage current in HVPE (001) β-Ga<sub>2</sub>O<sub>3</sub> SBDs via high-sensitive emission microscopy.[2]

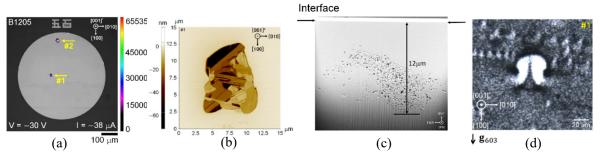
#### 2. Fabrication

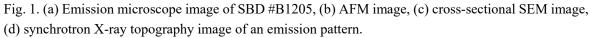
An n-type  $\beta$ -Ga<sub>2</sub>O<sub>3</sub> epitaxial layer grown by HVPE on a 2" EFG-grown (001) single-crystal wafer substrate. The net donor doping density, N<sub>D</sub> - N<sub>A</sub>, is 1.4 × 10<sup>16</sup> cm<sup>-3</sup>. The epitaxial thickness is ca. 10 µm. For the ohmic contact, Ti/Au was evaporated on the entire back face, whereas for the Schottky barrier (SB) contacts, Ni/Au was evaporated on the surface.

#### 3. Results and discussion

Emission microscope image of the SBD #B1205 with a 500  $\mu$ m diameter with a high reverse leakage current (density) of  $-38 \ \mu$ A ( $-19.3 \ mA \cdot cm^{-2}$ ) at  $-30 \ V$  [Fig. 1(a)] shows two emission patterns, #1 and #2. AFM images [Fig. 1(b)] shows that emission pattern #1 is polycrystalline defect which contains numerous domains. In cross-sectional SEM image [Fig. 1(c)] shows a porous particle containing highly dense voids observed below the defect. In synchrotron X-ray topography [Fig. 1(d)] the polycrystalline defect was seen as a butterfly contrast.

### 4. Conclusion


Polycrystalline defect is found to be one of the main reverse leakage current paths of HVPE (001)  $\beta$ -Ga<sub>2</sub>O<sub>3</sub> SBDs.


## **Acknowledgements**

This work was supported by the NEDO and JSPS Grants-in-Aid for Scientific Research (No. 19H02616).

#### References

K. Sasaki *et al.*, IWGO2019, Dev 1, 1 (2019).
Sdoeung S. *et al.*, APL. **117**, 022106 (2020).



