Ir 触媒を用いたホットウォール CVD 法による Si 基板上への単層カーボンナノチューブの成長

Synthesis of single-walled carbon nanotube on Si substrates

by alcohol catalytic chemical vapor deposition using Ir catalyst in hot-wall reactor 名城大ナノマテセンター¹,名城大理工² (P)三崎亜衣¹,丸山 隆浩^{1,2}
Nanomaterial Research Center¹, Meijo Univ.², Ai Misaki, Takahiro Maruyama

E-mail: takamaru@meijo-u.ac.jp

1. 緒言

我々の研究室ではこれまで、コールドウォールCVD法によるIr触媒からの単層カーボンナノチューブ (SWCNT) 成長を報告してきた[1]。今回、コスト的に有利なホットウォールCVD法を用いて、Si基板上に堆積させたIr触媒からのSWCNT成長を試みた。特にエタノールの流量と成長温度が SWCNT成長に与える影響について調べた。

2. 実験方法

 SiO_2/Si 基板にアークプラズマガンを用いてIr触媒を厚さ $0.3\,nm$ 相当蒸着した。ホットウォール反応器内で、エタノール蒸気を流しSWCNT成長を行った。作製した試料はラマン分光とFESEMにより評価を行った。

3. 結果と考察

エタノールの流量を最適化することにより、成長温度 700°C から 900°C の間で SWCNT を成長させることに成功した。 488、532、671、および 785 nm の 4 種類の励起波長のレーザを用いて行ったラマンスペクトル測定の結果、700°C および 800°C で Ir 触媒から成長した SWCNT の多くは直径が 1.0 nm より細いことがわかった。 成長温度が 800°C を超えると、垂直に配列した SWCNT が成長し、900°C では、エタノール流量 500 sccm 下で 60 分間の成長後,SWCNT 膜は厚さが 1.8 μ m に達した(Fig.1)[2]。 ただし、900°C では SWCNT の直径は太くなり、多くは 1 nm 以上に分布していた。 本結果から、成長温度を 800°Cにすることでホットウォール CVD 法を用いても μ m 媒から細径の SWCNT が垂直配向して成長することが示された。

謝辞

本研究の一部は私立大学研究ブランディング事業"新規ナノ材料の創製による名城大ブランド構築プログラム"および、文科省ナノテクノロジープラットフォーム事業(分子・物質合成)の支援を受けて行なった。

- [1] T. Maruyama et al. Appl. Surf. Sci. 509 (2020) 145340.
- [2] A. Misaki et al. Jpn. J. Appl. Phys. 60 (2021) 015003.

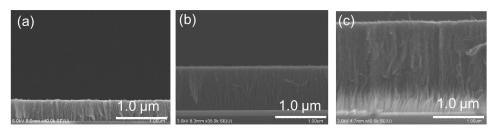


Fig.1 Cross-sectional SEM images of SWCNTs grown at 900 $^{\circ}$ C under an ethanol flow rate of 500 sccm for (a) 10, (b) 30 and (c) 60 min.