Thickness-dependent quantum transport of Weyl fermions in ultra-high-quality SrRuO₃ thin films

Shingo Kaneta-Takada,^{1,2,} Yuki K. Wakabayashi,¹ Yoshiharu Krockenberger,¹

Shinobu Ohya,^{2,3} Masaaki Tanaka,^{2,4} Yoshitaka Taniyasu,¹ and Hideki Yamamoto¹

¹NTT Basic Research Laboratories, ²Department of Electrical Engineering and Information System, University of Tokyo, ³Institute of Engineering Innovation, The University of Tokyo, ⁴Center for Spintronics Research Network (CSRN), The University of Tokyo

E-mail: skaneta@cryst.t.u-tokyo.ac.jp; yuuki.wakabayashi.we@hco.ntt.co.jp

The recent observation of Weyl fermions in the itinerant 4*d* ferromagnetic perovskite SrRuO₃ points to this material being a good platform for exploring novel physics related to a pair of Weyl nodes.^[1] For future investigations into SrRuO₃-based heterostructures aiming at applying magnetic Weyl semimetals to spintronic devices^[2] and topoelectrical circuits,^[3] it will be essential to realize Weyl transport near heterointerfaces. In epitaxial SrRuO₃ films, higher resistivity and lower Curie temperature are commonly found when the film thickness is decreased. Therefore, there should be a critical thickness for observing the transport signatures of Weyl fermions, depending on the quality of SrRuO₃ films.

In this presentation, we report the thickness-dependent magnetotransport properties of ultra-high-quality epitaxial SrRuO₃ films.^[4] We grew SrRuO₃ films with various thicknesses t (= 1–60 nm) on (001) SrTiO₃ substrates by machine-learning assisted molecular beam epitaxy.^[5]

We performed magnetotransport measurements on the SrRuO₃ films by using the standard four-pointprobe method. Figures 1(a) and (b) show the Shubnikov-de Haas (SdH) oscillations for the SrRuO₃ film with t = 10 nm. Quantum oscillation peaks (black triangles) and dips (white triangles) are clearly seen in a *raw* σ_{xx} data. We confirmed a high quantum mobility of about 10,000 cm²V⁻¹s⁻¹ and existence of a π Berry phase by detailed analyses of the SdH oscillation data using the Lifshitz-Kosevich (LK) theory. The signatures of Weyl fermion transport, i.e., unsaturated linear positive magnetoresistance accompanied by a SdH oscillation, were observed in the films with $t \ge 10$ nm: even a 10 nm-thick film showed the SdH oscillation. In addition, residual resistivity increased with decreasing film thickness, indicating disorder near the interface between the SrRuO₃ film and the SrTiO₃ substrate. These thickness-dependent magnetotransport is 21. The thickness-dependent disorder affects magnetic properties as well. The Curie temperature decreases and the coercive field increases with decreasing thickness. Our results provide guidelines for realizing quantum transport of Weyl fermions in SrRuO₃ near heterointerfaces.

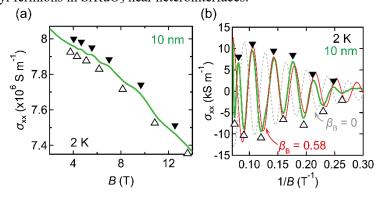


Figure 1 (a) SdH oscillation in raw σ_{xx} data at 2 K with magnetic field *B* (2 T < *B* < 14 T) applied in the out-of-plane [001] direction of the SrTiO₃ substrate for SrRuO₃ film with *t* = 10 nm. (b) Its background-subtracted SdH oscillation with *B* (3.5 T < *B* < 14 T). In (b), red and gray dashed curves are the LK formula fittings with the Berry phases $2\pi\beta_{\rm B}$ of 1.16π and 0, respectively.

References [1] K. Takiguchi, Y. K. Wakabayashi, *et al.*, Nat. Commun. **11**, 4969 (2020). [2] Y. Araki *et al.*, Phys. Rev. Appl. **10**, 014007 (2018). [3] C. H. Lee *et al.*, Commun. Phys. **1**, 39 (2018). [4] S. Kaneta-Takada, Y. K. Wakabayashi, *et al.*, arXiv:2011.03670. [5] Y. K. Wakabayashi, *et al.*, APL Mater. **7**, 101114 (2019).