
VO₂薄膜の金属-絶縁体転移挙動の変調

Modulation of the Metal-to-Insulator Transition Behavior of VO₂ Films 北大院情報¹, 北大電子研²⁰(D1)陳 斌杰¹, キム ゴウン¹, ジョ ヘジュン^{1,2}, 太田 裕道^{1,2} IST¹, RIES² Hokkaido Univ., Binjie Chen¹, Gowoon Kim¹, Hai Jun Cho^{1,2}, Hiromichi Ohta^{1,2} E-mail: binjie.chen.t7@elms.hokudai.ac.jp

Vanadium dioxide (VO₂) shows a first-order phase transition between monoclinic insulating phase and rutile metallic phase around the phase transition temperature, $T_c = 68$ °C (Bulk). During the transition, its properties also change abruptly, promising for a lot of potential applications in optical, electrical, and thermal devices. However, the T_c of bulk VO₂ is relatively high and hard to control. Moreover, its phase transition is usually accompanied by thermal hysteresis which is induced by the latent heat of first order transition. These two problems seriously restrict its practical applications and become the main research focus of VO₂. Accumulating evidence suggests that the lattice constant plays an important role in the phase transition behavior of VO₂ and by using TiO₂ substrate to introduce epitaxial strain to VO₂ film, the T_c can be greatly reduced ^[1]. However, the expensiveness of TiO₂ single crystal limits the large-scale use.

In this study, we used rutile TiO₂ buffer layer fabricated on the (10-10) α -Al₂O₃ substrates, instead of using TiO₂ substrate, to modify the interface strain condition of VO₂ films. By controlling the thickness of TiO₂ buffer layer, the lattice parameter of VO₂ films can be continuously adjusted, further causes the regular change of *T_c*. Moreover, by simultaneously controlling the bilayer thickness, the thermal hysteresis can be significantly reduced. We consider these results may be useful for the design of VO₂-based device.

Figure | (a) Lattice parameter *c* as a function of the TiO₂ layer thickness. The two dashed lines indicate the half of bulk lattice parameter a of the monoclinic phase and the bulk lattice parameter *c* of the rutile phase of VO₂, separately. The lattice parameter of the samples shows narrow hysteresis is larger than bulk $a_{M1}/2$. (b) Temperature dependence of the electrical resistivity of some typical VO₂ samples in (a). The T_c of 10 nm VO₂ film decreases to the near room temperature of ~34 °C with 200 nm TiO₂ buffer layer. When increasing the VO₂ thickness, the T_c will increase but the thermal hysteresis width ΔT_c can be significantly narrowed.

[1] Y. Muraoka, Z. Hiroi, Appl. Phys. Lett. 80, 583-585 (2002).