高耐圧(2608 V)NO₂ ドープ p チャネルダイヤモンド MOSFET 2608 V Operation of NO₂-Doped p-channel Diamond MOSFETs 佐賀大院工¹, アダマンド並木精密宝石(株)²

⁰ニロイ チャンドラ サハ¹, 金 聖祐², 大石敏之¹, 川又友喜², 小山浩司², 嘉数 誠¹

Saga Univ.¹, Adamant Namiki Precision Jewel Co., Ltd.²

^ON. C. Saha¹, S. -W. Kim², T. Oishi¹, Y. Kawamata², K. Koyama², M. Kasu¹

E-mail: kasu@cc.saga-u.ac.jp

1. Introduction

Diamond possesses a very high breakdown field of >10 MV/cm and thermal conductivity of 22 W/cm·K. These properties could enable diamond for high power operation. Using NO₂ p-type doping, the hole sheet concentration of H-diamond can be increased up to ~1 × 10¹⁴ cm⁻². [1] Recently, we demonstrated NO₂-doped p-channel diamond MOSFETs with both high current and voltage operation that leads to an available output power density of 145 MW/cm². [2] In this work, by using a passivation layer, we demonstrate NO₂-doped pchannel diamond MOSFETs with a greatly increased breakdown voltage (2608 V).

2. Growth and Fabrication

Diamond MOSFETs were fabricated on (001) heteroepitaxial diamond (Kenzan diamond[®]). Hdiamond was exposed to NO₂ gas and 16-nm-thick Al₂O₃ layer was deposited on it. A gate was formed, and the hole channel was passivated by the 100-nmthick Al₂O₃ layer over the gate. The channel length was 15 μ m, and the gate length was 1.5 μ m.

3. Results and Discussion

The maximum drain current ($I_{D,max}$) of diamond MOSFETs without any passivation layer was measured as 181 mA/mm as shown in Fig. 1(a). After the deposition of the 100-nm thick Al₂O₃ passivation layer over the gate, $I_{D,max}$ reduced to 144 mA/mm [see Fig. 1(b)]. Figure 2 compares the offstate high voltage characteristics of MOSFETs with and without passivation layer measured at gate bias of 9 V. The MOSFET without passivation layer can sustain until 1280 V. However, the MOSFET with the passivation layer reached the breakdown voltage of 2608 V and this value is the highest for the diamond MOSFETs. The lateral breakdown field of the MOSFETs increased from 1.2 to 2.37 MV/cm.

4. Conclusion

In conclusion, by using Al_2O_3 passivation layer, we have demonstrated the high voltage (2608 V) operation of NO₂-doped p-channel diamond MOSFETs.

Acknowledgements

This work was supported by the JSPS Grants-inaid for Scientific Research (No. 19H02616).

References

- [1] M. Kubovic, M. Kasu, Appl. Phys. Express 2 (2009) 086502.
- [2] N.C. Saha, M. Kasu, et al., IEEE Electron Dev. Lett. 41 (2020) 1066.

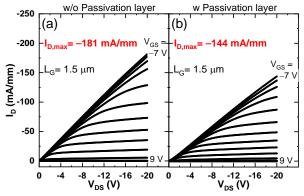


Fig 1. DC output characteristics of NO₂-doped pchannel diamond MOSFETs (a) without and (b) with Al₂O₃ passivation layer.

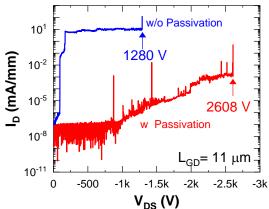


Fig. 2. Off-state breakdown voltages of NO_2 -doped pchannel diamond MOSFETs with and without Al_2O_3 passivation layer.