Insights into the multi-site emission from SrAl₂O₄:Eu²⁺-Dy³⁺ persistent phosphors by

time-resolved streak imaging

物材機構¹ O許 健¹, 高橋 向星¹, 中西 貴之¹, 武田 隆史¹, 広崎 尚登¹

NIMS^{1 °} Jian Xu¹, Kohsei Takahashi¹, Takayuki Nakanishi¹, Takashi Takeda¹, Naoto Hirosaki¹

E-mail: XU.Jian@nims.go.jp

[Introduction] Persistent phosphors with intense and long duration persistent luminescence (PersL, a "self-sustained" luminescence after ceasing external excitation) continuously stimulate the extensive research interest of material scientists, chemists, physicists, and even biologists because of their unique optical phenomena and potential widespread applications [1]. SrAl₂O₄:Eu²⁺-Dy³⁺, as one of the most successfully persistent phosphors since its discovery by Nemoto & Co., LTD at the beginning of 1990s [2], gives nearly perfect PersL properties: (i) extremely bright and long duration in the dark (over 30 hours before the emission intensity dropping upon 0.32 mcd/m²); (ii) green emission band peaking at ~530 nm that matches well with the human's photopic vision; (iii) broad excitation band suitable for the charging process *via* conventional fluorescent lamps and large absorption cross-section of the parity-allowed Eu²⁺: $4f^7 \rightarrow 4f^65d^1$ transition; (iv) highly chemical and physical stability without any radioactive elements. It was reported that an additional broad band emission at ~450 nm can be clearly observed at low temperatures (*i.e.*, 100 K) [3], which is attributed to the Eu²⁺ emission from that occupying the other Sr site. Here, in order to clarify the relationship between the two kinds of Sr sites, low temperature time-resolved spectroscopy of commercial SrAl₂O₄:Eu²⁺-Dy³⁺ is investigated.

[Experimental procedure] Commercial $SrAl_2O_4$: $Eu^{2+}-Dy^{3+}$ powder phosphors (Nemoto & Co., LTD, LumiNova[@], G-300M) are used as target samples. The detailed setup of time-resolved streak imaging system with microscope spectrometer and OPO femtosecond (fs) laser will be explained during the conference.

[Results and discussion] Fig. 1 gives time-resolved streak imaging of the $SrAl_2O_4:Eu^{2+}-Dy^{3+}$ sample under 365 nm laser excitation. At low temperature (4 K), besides the well-known green emission from the Sr2 site, an additional emission in the blue region from the Sr1 site is clearly observed, which exhibits much faster decay kinetics (~0.44 µs) compared with that from the Sr2 site (~1.28 µs). However, at room temperature, the blue emission from the Sr1 site is almost quenched, while the green emission from the Sr2 site becomes dominant. The nonexponential decay profile of Eu^{2+} from the Sr1 site suggests the possible energy transfer (ET) process between Eu^{2+} in two sites, which contributes to the fast quenching behavior of Eu^{2+} emission at the Sr1 site.

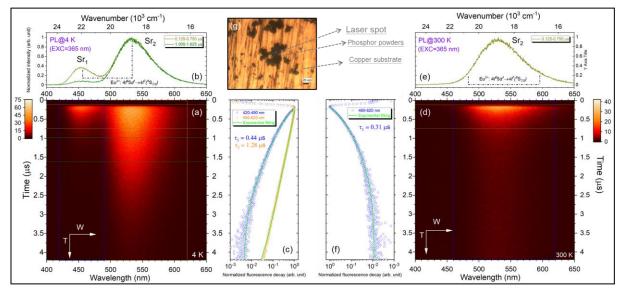


Fig. 1. Time-resolved streak imaging under 365 nm laser excitation of the commercial SrAl₂O₄:Eu²⁺-Dy³⁺ powder phosphors (LumiNova[@], G-300M) recorded at (a) 4 K and (d) 300 K; PL spectra at (b) 4 K monitoring the time range from 0.125 µs to 0.75 µs as well as from 1 µs to 1.625 µs (e) 300 K monitoring the time range from 0.125 to 0.75 µs; fluorescence decay curves at (c) 4 K monitoring the wavelength range from 420 to 490 nm as well as from 490 nm to 620 nm (f) 300 K monitoring the wavelength range from 460 to 620 nm; (g) the photograph of powder samples dispersed above a copper substrate, and the performed laser excitation spot is <1 µm.

- [1] J. Xu, S. Tanabe, J. Lumin., 205 (2019) 581-620.
- [2] T. Matsuzawa, Y. Aoki, N. Takeuchi, Y. Murayama, J. Electrochem. Soc., 143 (1996) 2670-2673.
- [3] J. Ueda, T. Nakanishi, Y. Katayama, S. Tanabe, Phys. Status Solidi C, 9 (2012) 2322-2325.