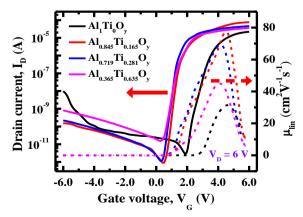

ミスト CVD 法による Al_{1-x}Ti_xO_y 薄膜の作製とゲート絶縁膜への応用 Al_{1-x}Ti_xO_y Thin Films Synthesized by Mist-CVD and Applied as a Gate Insulating Layer

埼玉大理工研 <u>A. Rajib¹</u>, A. Kuddus, 志田, 横山行純, 上野啓司, 白井肇


Saitama U., A. Rajib¹, A. Kuddus, T. Shida, K. Yokoyama, K. Ueno, and H. Shirai

E-mail: rajib.apee.38@gmail.com

We investigated the synthesis of aluminum oxide (AIO_x) thin films using mist chemical vapor deposition (mist-CVD) from aluminum acetylacetonate (Al(acac)₃) and CH₃OH/H₂O mixture. Different deposition parameters, such as the flow rate of dilution gas N_2 (F_d), furnace temperature (T_f), solution concentration, and mesh bias (V_m) were optimized via the analysis of the size distribution of mist precursors using a fast-scanning mobility particle analyzer. The film morphology, the rigidity of the AlO_x network, and junction property at the AlO_x/n -type crystalline Si (n-Si) were dominated by the size distribution of the mist precursors. Further, the V_m supply during film growth promoted the miniaturization of the size distribution of the charged mist particles, resulting in an increased refractive index (n) of the AlO_x thin films with small surface roughness values. Furthermore, such property of the AlO_x films improved the junction property at the AlO_x/n -Si interface [1]. In the present study, the effect of titanium precursor $Ti(acac)_4$ additive on the growth of $Al_{1-x}Ti_xO_y$ thin films were investigated for different Ti(acac)₄/Al(acac)₃ ratios. Understanding the junction property at the Al₁- $_{x}Ti_{x}O_{y}/n$ -Si interface and examining the potential of Al_{1-x}Ti_xO_y obtained through by mist-CVD to act as a gate insulator layer for MOS-FETs are also investigated compared with solely AIO_x by using mechanically exfoliated MoSe₂ flake as a channel. Figure 1 shows the bandgap energy E_g and *n* value at 3.5 eV for Al₁-_xTi_xO_y films with different x values. E_g decreased gradually from 6.35 to 3.6 eV together with the increase of *n* value when x value was increased. Figure 2 shows the V_g - I_{sd} characteristics for the MoSe₂ FETs (thickness of 30-40 nm) on a ~40 nm thick $Al_{I-x}Ti_xO_y/p^+$ -Si with different x ratios. The FET mobility increased markedly together with lowering V_{th} by adjusting the x value. These findings suggest that mist-CVD $Al_{1-x}Ti_xO_y$ films have great potential as a gate insulating layer. [1] A. Rajib, et. al., ACS Applied Electronic Mater. (2021).

Figure 1: E_g and *n* value at 3.5 eV of $Al_{l-x}Ti_xO_y$ thin films as a function of *x* value.

Figure 2: V_g - I_D characteristics of the MoSe₂ based FETs with Al_{1-x}Ti_xO_y as a gate insulator layer for different *x* values.