Poster Session | F. From Microstructure to Properties: Mechanisms, Microstructure, Manufacturing

[PO-F1]Poster Session 1 Symposium F Mon. Oct 29, 2018 5:45 PM - 8:00 PM Poster Hall

[P1-34]Transition-metal alloying of γ'-Ni₃AI: Effects on the ideal uniaxial compressive strength from first-principles calculations

^OMinru Wen^{2,1}, Chongyu Wang² (1.Guangdong University of Technology, China, 2.Tsinghua University , China)

The addition of transition metal (TM) elements into the γ′ precipitate phase of a Ni-based single-crystal superalloy can significantly affect its mechanical properties, including the intrinsic mechanical property of compressive strength. Using first-principles density functional calculations, the effects of 3d (Sc-Zn), 4d (Y-Cd) and 5d (Hf-Au) TM alloying elements on the ideal uniaxial compressive strength of γ′-Ni₃Al were investigated. The stress-strain relationships of pure Ni₃Al under [100], [110] and [111] compressive loads and the site occupancy behavior of TM elements in Ni₃Al were prior studied using a total-energy method based on density functional theory. Our results showed that the capacity of TM elements for strengthening the ideal compressive strength was associated with the *d*-electron number. The alloying elements with half-filled *d*-bands (*i.e.*, Cr, Mo, W, Tc and Re) manifested the greatest efficacy for improving the ideal strength of Ni₃Al under a deformation along the weakest compressive direction. Furthermore, the charge redistribution of Ni₃Al doped with 5*d* elements were also analyzed to understand the strengthening mechanisms of TM elements in the γ′-Ni₃Al phase.