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Material variability from heterogeneous microstructure, such as grain and pore morphologies, can have

significant effects on component behavior and creates uncertainty around performance. Current engineering

material models typically do not incorporate microstructural variability explicitly, rather functional forms are

chosen based on intuition and parameters are selected to reflect mean behavior. Conversely, mesoscale

models that capture the microstructural physics, and inherent variability, are impractical to utilize at the

engineering scale. An enhanced design methodology must be developed for materials with significant

variability, such as current additively manufactured (AM) metals, to predict the ensemble response. 

 

To address these challenges we have developed a method based on the Embedded Uncertainty formulation,

Sargsyan, Najm, Ghanem (2015) to calibrate distributions of material parameters from high-throughput

experimental data. With this method, material variability is directly associated with commonly-used material

parameters using a chosen nominal model. One of the benefits of this approach is that expert knowledge can

be extended to interpret the effect of (hidden) microstructure on variable mechanical response. In a

complementary effort, we are developing machine learning techniques to handle the large volume of data

from high-throughput methods. The focus of this aspect is on adapting common machine learning models,

such as neural networks, to obey the same exact properties and symmetries as traditional constitutive models

while representing features in the data in a flexible, bias-less manner, Tensor Basis Neural Network in Ling,

Jones, Templeton (2016). Classical constitutive modeling provides guidance in selecting appropriate

microstructural descriptors as inputs and functional frameworks for outputs. Examples of application of these

techniques to polycrystalline, porous metals, motivated by current AM materials, will be given.


