Relationship between the Waking-up Effect and Structural Distortion in Ferroelectric HfO₂ characterized by X-ray Diffraction

Siri Nittayakasetwat and Koji Kita Department of Materials Engineering, University of Tokyo 7-3-1 Hongo, Bunkyo-*k*u, Tokyo 113-8656, Japan E-mail address of the corresponding author: siri-n@g.ecc.u-tokyo.ac.jp

Abstract

The possible origin of the waking-up effect in ferroelectric (FE) HfO₂ was investigated via the analysis of structural distortion using X-ray diffraction. We found a remarkable increase in the difference in the in-plane and out-of-plane interplanar spacing (d_{spacing}) with the increase in the waking-up ratio of FE-HfO₂. Although the mechanism has not been clarified yet, the result provides evidence of the relationship between the waking-up ratio and the amount of structural distortion in FE-HfO₂.

1. Introduction

Since the discovery of FE-HfO₂, it has become one of the hottest functional oxides in CMOS applications due to its high compatibility with the current Si-technology.1 While bulk HfO2 crystallizes into the none polar monoclinic (m-) phase, the noncentrosymmetric polar orthorhombic (o-) phase can be induced and stabilized by external factors, such as dopants and surface energy.^{2,3} Despite the intensive investigation on the fabrication process of FE-HfO2, it is commonly observed that the switchable polarization (P_{sw}) of FE-HfO₂ often increases during the device operation, so-called the waking-up effect. It was suggested that the waking-up of P_{sw} is the result of the evolution of defect distribution and phase transformation during bipolar cycling.⁴ In this study, we are focusing on the relationship between the waking-up ratio of FE-HfO₂, and the difference between the difference of in-plane and out-of-plane $d_{\rm spacing}$.

2. Experimental Method

It has already been studied that the amount of ophase in HfO₂ can be controlled by Y-doping concentration.⁵ Hence, three types of 30 nm-thick HfO₂ MIM capacitors with different Y-doping concentrations were fabricated: pure-HfO₂, Y-doped HfO₂ (Y-HfO₂), and high Y-doped HfO₂ (high Y-HfO₂). The Y-concentrations of Y-HfO₂ and high Y-HfO₂ were estimated by XPS to be in the range of 1.5 -4.5% and >7% cation ratio, respectively. All capacitors were fabricated by rf-sputtering HfO₂ on heavily doped p-Ge substrates, where the Y-dopant was introduced by co-sputtering HfO₂ and Y₂O₃. Then, post-deposited-annealing (PDA) was performed at 600°C in N₂ ambient for 30 s, followed by the deposition of Au top electrodes. The waking-up effect of FE-HfO₂ was characterized by 12 V pulse bipolar cycling at the frequency of 10 kHz. The structure of HfO₂ was analyzed using in-plane XRD and conventional out-of-plane XRD with $2\theta/\theta$ scan.

3. Result and Discussion

Fig. 1(a) shows the P-V characteristics of Y-HfO₂ at different stages during cycling, and the changes in P_{sw} during cycling are summarized in Fig. 1(b). The waking-up ratio ($r_{wake}=1-P_{sw, pristine}/P_{sw, max}$) was used to quantify the amount of waking-up effect. A significant waking-up effect ($r_{wake}=0.37$) was observed on Y-HfO₂; whereas, a slight waking-up effect ($r_{wake}=0.05$) is observed in pure-HfO₂. For high Y-HfO₂, the Y-incorporation lead to the transition tetragonal (t-) and cubic (c-) phase, therefore is paraelectric.⁵

An example of Y-HfO₂'s in-plane and out-ofplane XRD patterns are shown in Fig. 1(c). From the figure, there is a significant shift in the peak position to a lower angle when the measurement was made in the in-plane diffraction. This indicates that there is a remarkable difference in d_{spacing} that is parallel (out-ofplane) and perpendicular (in-plane) to the HfO₂'s surface. We hypothesize that there is a significant lattice distortion in the FE-HfO₂ structure.

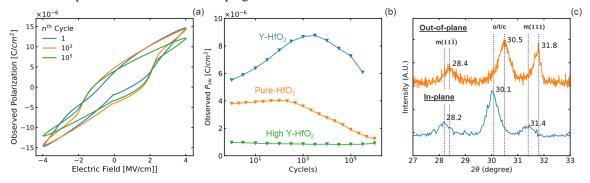


Fig. 1 (a) P-V and I-V characteristics of Y-HfO₂ at its pristine, 10^3 , and 10^5 cycles. The change in P_{sw} during bipolar voltage cycling at 12 V and 10 kHz. (c) Out-of-plane and in-plane XRD (with incident angle of 0.45°) of Y HfO₂. Note that all XRD data were made without neither the top Au electrode nor electrical treatments.

To estimate the amount of structural distortion, we compared the observed in-plane and out-of-plane d_{spacing} of the higher symmetric (o/t/c) phases. The in-plane d_{spacing} seems slightly larger than the d_{spacing} of the reported values of relaxed t-⁶ and c-⁷ phase, which is indicated in Fig. 2(a). It is known that the stabilization of the polar o-phase in HfO₂ is closely related to the introduction of tensile strain in HfO₂ film during the annealing process.^{8,9} Our results show that there was a slight expansion in the in-plane d_{spacing} . On the contrary, the out-of-plane d_{spacing} was anomalously shrunk when compared with the in-plane d_{spacing} and the reported values.

One might expect that the tensile strain induced by the substrate to have a depth dependence. Fig. 2(b) shows the depth dependence of HfO₂'s in-plane d_{spacing} measured by in-plane XRD at various incident angles. In the shallow region, there is a decrease in the Y- HfO_2 's and pure- HfO_2 's in-plane $d_{spacing}$. As expected from a PDA condition, there is relaxation of d_{spacing} as it moves further away from the substrate. Despite the relaxation, the in-plane d_{spacing} of Y-HfO₂ is still larger than its out-of-plane d_{spacing} as opposed to the in-plane d_{spacing} of pure-HfO₂ that approaches its out-of-plane d_{spacing} . On the other hand, the in-plane d_{spacing} of high Y-HfO2 was almost unaffected by its depth. It is important to notice that there is still a large difference between the in-plane and out-of-plane d_{spacing} of high Y-HfO₂, despite being paraelectric.

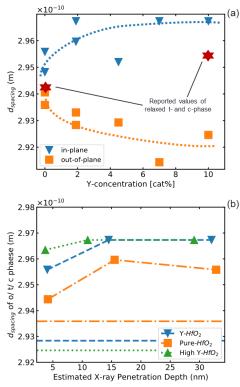


Fig. 2 (a)The d_{spacing} of o/t/c phases at different Y-doping concentrations in the in-plane and out-of-plane directions. The reported value of relaxed d_{spacing} of the t-phase and c-phase are indicated by the red stars. (b) The depth dependence of the in-plane d_{spacing} of o/t/c phases of pure-HfO₂, Y-HfO₂, and high Y-HfO₂. The horizontal lines are indicating d_{spacing} determined from the $2\theta/\theta$ scan.

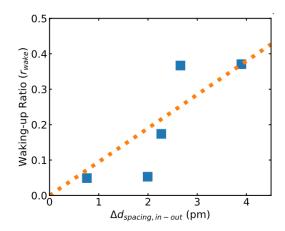


Fig. 3 The relationship between r_{wake} and $\Delta d_{spacing, in-out}$ of o/t/c phases. The dotted line is the modelling of the relationship.

To explain the anomalous shrinkage of the out-ofplane d_{spacing} and how it affects the waking up phenomenon in FE-HfO₂, we consider the relationship between the r_{wake} , and the difference between the inplane and out-of-plane d_{spacing} of o/t/c phases ($\Delta d_{\text{spacing}}$, in-out), as shown in Fig. 3(a). By assuming that the formation of the polar o-phase is facilitated by the lattice distortion of its parental t-phase,⁹ we speculate that the pristine difference in the in-plane and out-ofplane d_{spacing} (induced by the annealing process) is one of the driving forces on the waking-up effect in FE-HfO₂. This would infer that FE-HfO₂ with a large $\Delta d_{\text{spacing, in-out}}$ would have a larger r_{wake} by the phase transformation of the provisional polar t-phase to polar o-phase during cycling. So far, our experimental finding is in good agreement with our consideration.

4. Conclusion

From bipolar cycling, a significant amount of waking-up effect was observed in Y-HfO₂; whereas, a small waking-up effect was found on pure-HfO₂. By analyzing the lattice structure of HfO₂, it was found that there is a remarkable difference in the in-plane and out-of-plane d_{spacing} of FE-HfO₂. The in-plane d_{spacing} was slightly expanded, whereas the out-of-plane d_{spacing} was significantly shrunk when comparing to the reported values of the relaxed d_{spacing} . Although the mechanism is still under investigation, the relationship between the $\Delta d_{\text{spacing, in-out,}}$ and the observed r_{wake} of FE-HfO₂ can be explained by our proposed model that the significant distortion (expressed as $\Delta d_{\text{spacing, in-out,}}$) in HfO₂ film is one of the factors that drive the waking-up effect of FE-HfO₂.

5. References

- ¹ T.S. Böscke, et al., APL: 99, 102903 (2011).
- ² M. Hoffmann, et al., JAP. 118, 072006 (2015).
- ³ L. Xu, et al JAP. 122, 124104 (2017).
- ⁴ M. Pešić, et al, Adv. Funct. Mater. 26, 4601 (2016).
- ⁵ T. Olsen, et al., APL. 101, 082905 (2012).
- ⁶ X. Zhao and D. Vanderbilt, Phys. Rev. B. 65, 1 (2002).
- ⁷ D.W. Stacy, et al. J. Am. Ceram. Soc. 58, 285 (1975).
- ⁸ T. Shiraishi, et al., APL. 108, 262904 (2016).
- ⁹T.D. Huan, et al, Phys. Rev. B. 90, 064111 (2014).